

### Unsupervised Hashing with **S**imilarity **D**istribution **C**alibration

### Kam Woh Ng<sup>1,2</sup>, Xiatian Zhu<sup>1,3</sup>, Jiun Tian Hoe<sup>4</sup>, Chee Seng Chan<sup>5</sup>, Tianyu Zhang<sup>6</sup>, Yi-Zhe Song<sup>1,2</sup>, Tao Xiang<sup>1,2</sup>

<sup>1</sup>CVSSP, University of Surrey 2<sup>i</sup>FlyTek-Surrey Joint Research Centre <sup>3</sup>Surrey Institute for People-Centred AI <sup>4</sup>Nanyang Technological University <sup>5</sup>CISiP, Universiti Malaya <sup>6</sup>GAC R&D Centre





# Image Retrieval



# Image Retrieval





# **Image Retrieval**

e.g., 2048 bytes (512-d vector)  $\rightarrow$  8 bytes (64-bits binary) per image  $\rightarrow$  256x smaller!!





# Unsupervised Hashing



# **Unsupervised Hashing**





# **Expected Outcome**



Similarity Distribution:

- We randomly sample many data pairs and compute their similarities, then plot them as histogram.

#### After hashing:

- Reproduce the similarity distribution!



# What is the problem?





# What is the problem?

- **Similarity Collapsing** happens because the distance loss did not consider the ability of the hash codes representing similarity in the hash space.
- Low-dimensional K-bits hash codes:
  - Having discrete distances  $L = \frac{1}{|N|} \sum_{(i,j) \in N} |\cos(x_i, x_j) \cos(b_i, b_j)|^p$
  - The discrete distance is limited in range from **0** to K





# What do we observe?

• Assuming the hash space are fully utilized, when we randomly sample two items from a database, what will be the similarity distribution?





# Similarity Distribution Calibration

• Can we align the hash code similarity distribution with a calibration distribution (such as Beta distribution)?



- Empirical Distribution is the hash code similarity distribution (constructed with feature similarity to achieve similarity preserving)

- Calibration Distribution is the target distribution (e.g., Beta distribution)



# Similarity Distribution Calibration

- Can we align the hash code similarity distribution with a calibration distribution (such as Beta distribution)?
- Proposal: To minimize the Wasserstein distance.



$$L_{Wasserstein} = \int_{0}^{1} |F^{-1}(z) - C^{-1}(z)| dz \longrightarrow L_{sdc} = \frac{1}{|N|} \sum_{(i,j) \in sorted(N)} \left| \cos(b_i, b_j) - C^{-1}\left(\frac{2i-1}{2|N|}\right) \right|$$



# Show me the result!!



## Visualization of toy example



Toy example: Learning a 2-bits hash function for 4 well separable object classes

Observation:

- 1. Simply preserving the distance collapses the similarity scores completely across all the classes (GreedyHash)
- 2. Adding code balance layer (BiHalf) reduces the degree of collapsing to two groups.
- 3. Through aligning the similarity distribution with a calibration distribution, our SDC solves this collapsing problem well



# Retrieval example



Figure 8: Two qualitative object image retrieval examples on CIFAR10. Green: Positive class; Red: Negative class.



# Experimental result

| Methods                  | Reference  | CIFAR10 |             |             | ImageNet100 |      |             | NUSWIDE |       |       | MS-COCO |             |       |
|--------------------------|------------|---------|-------------|-------------|-------------|------|-------------|---------|-------|-------|---------|-------------|-------|
|                          |            | 16      | 32          | 64          | 16          | 32   | 64          | 16      | 32    | 64    | 16      | 32          | 64    |
| VGG16                    |            |         |             |             |             |      |             |         |       |       |         |             |       |
| LsH [ 🛄                  | STOC'98    | 23.9    | 29.6        | 37.6        | 14.7        | 29.7 | 48.7        | 51.0    | 59.3  | 67.1  | 45.2    | 51.6        | 59.8  |
| SH [19]                  | NeurIPS'08 | 41.8    | 42.1        | 43.5        | 35.1        | 50.9 | 60.9        | 63.0    | 60.9  | 64.0  | 59.4    | 64.8        | 66.2  |
| ITQ [ 🛄                  | TPAMI'12   | 46.8    | 51.3        | 54.4        | 45.5        | 62.1 | 72.7        | 73.2    | 75.0  | 77.1  | 67.6    | 72.9        | 75.4  |
| SSDH [53]                | IJCAI'18   | 41.0    | 39.6        | 38.5        | 32.3        | 40.1 | 44.6        | 66.8    | 67.8  | 66.7  | 53.9    | 56.7        | 57.4  |
| GreedyHash [🛂]           | NeurIPS'18 | 44.9    | 51.9        | 55.7        | 54.4        | 68.7 | 74.7        | 70.0    | 76.2  | 79.3  | 66.8    | 73.2        | 77.4  |
| TBH 🔽                    | CVPR'20    | 48.2    | 50.2        | 50.7        | 42.9        | 44.5 | 48.3        | 75.8    | 77.8  | 78.5  | 68.8    | 72.6        | 74.8  |
| CIBHash <sup>†</sup> [🗳] | IJCAI'21   | 56.2    | 59.2        | 61.2        | 63.9        | 71.4 | 74.6        | 77.1    | 79.7  | 80.9  | 73.3    | 77.0        | 78.5  |
| BiHalf [ 💶 ]             | AAAI'21    | 54.7    | 58.1        | 60.6        | 60.7        | 71.2 | 76.0        | 77.4    | 80.1  | 81.9  | 71.2    | 75.6        | 78.0  |
| SDC <sup>†</sup>         | Ours       | 59.8    | 64.0        | 66.3        | 72.8        | 78.5 | 80.6        | 80.7    | 82.3  | 83.4  | 76.9    | <b>79.8</b> | 81.2  |
| ResNet50                 |            |         |             |             |             |      |             |         |       |       |         |             |       |
| NSH <sup>†</sup> [56]    | IJCAI'22   | 70.6*   | 73.3*       | 75.6*       | -           | -    | -           | 75.8*   | 81.1* | 82.4* | 74.6*   | 77.4*       | 78.3* |
| $\mathbf{SDC}^{\dagger}$ | Ours       | 74.2    | 75.8        | <b>78.4</b> | 80.7        | 83.8 | 85.7        | 81.2    | 83.2  | 84.2  | 78.3    | 81.1        | 82.6  |
| ViT-B/16                 |            |         |             |             |             |      |             |         |       |       |         |             |       |
| WCH <sup>†</sup> [53]    | ACCV'22    | 77.5    | 79.3        | 80.6        | 69.4        | 76.9 | 80.8        | 70.7    | 75.6  | 78.6  | 73.0    | 78.8        | 81.4  |
| SDC <sup>†</sup>         | Ours       | 87.4    | <b>88.4</b> | <b>89.0</b> | 76.4        | 82.6 | <b>84.9</b> | 81.8    | 83.3  | 84.0  | 79.2    | 83.3        | 84.5  |

Table 1: Unsupervised hashing results. \*: Originally reported. †: Using contrastive learning.



## Conclusion

- We analyzed a severe problem in unsupervised hashing, namely Similarity Collapsing in Hash Space
  - Hash space does not have enough "similarity range" during comparison, causing positive and negative pair to have the same similarity value
- We propose Similarity Distribution Calibration (SDC)
  - Aligning the hash code similarity distribution towards a calibration distribution
  - This distribution has sufficient spread across the similarity range.



# Thank you!

Github: <u>https://github.com/kamwoh/sdc</u>

