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Pre-requisite	
There	are	a	 few	prerequisites	before	you	 start	 this	practical,	please	ensure	you	have	 installed	 the	
following	toolboxes	or	libraries	in	your	computer.	You	may	follow	the	steps	below	for	installation:	

1. Install	Python	(Recommend	Anaconda	Python	2.7	version)	
i. Download	from:	https://www.continuum.io/downloads	

	
2. Install	opencv	library	(version	2.4.x.x)	

i. Download	opencv	library	from:	http://opencv.org/releases.html	
ii. Double-click	to	extract	the	opencv.	
iii. Go	to	“opencv/build/python/2.7/x64	folder.”	
iv. Copy	cv2.pyd	to	your	python	directory	in	the	“lib/site-packages”.	

	
3. Install	scikit-image	package.	

i. Open	anaconda	prompt	
ii. Type	“pip	install	scikit-image”	
iii. Web	reference:	http://scikit-image.org/	

	
4. Install	scikit-learn	package.		

i. Open	anaconda	prompt	
ii. Type	“pip	install	scikit-learn”	
iii. Web	reference:	http://scikit-learn.org/stable/	
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Introduction	
Computer	vision	 is	an	area	 in	computer	 science	 that	endow	the	capability	 to	extract,	analyse,	and	
understand	 a	 single	 image	 or	 sequence	 of	 images	 to	 a	 computer.	 It	 involves	 the	 development	 of	
theories	and	algorithms	to	transform	visual	images	into	descriptor(s)	which	is	useful	for	visual	context	
understanding,	 recognition	 task,	 and	 decision	 making.	 This	 is	 an	 emerging	 domain	 due	 to	 vast	
spectrum	of	applications,	for	examples,	scene	understanding,	object	recognition,	video	tracking,	event	
detection,	and	many	others.	To	achieve	this,	it	is	important	to	understand	the	general	pipeline	of	a	
computer	vision	algorithm	as	illustrated	in	Figure	1	and	this	pipeline	is	used	throughout	this	tutorial.					

	

	

	

Figure	1:	General	pipeline	of	computer	vision	algorithm	

	

In	this	practical,	the	participant	will	be	 instructed	on	how	to	perform	each	of	the	steps	mentioned	
above	with	supported	by	a	few	notable	python	libraries.	In	conjunction,	a	new	toolbox	named	Fuzzy	
Qualitative	Rank	Classifier	(FQRC)	will	be	introduced	for	Fuzzy	Classification.	FQRC	[Lim	et.	al.,	2014]	
is	proposed	to	overcome	the	limitations	of	Crisp	classification	and	ordinary	Fuzzy	Inference	System	
(FIS)	in	computer	vision	task.	Both	Crisp	and	Fuzzy	techniques	will	be	introduced	in	the	tutorial	with	
an	application	on	image	classification.	The	topics	included	in	the	tutorial	are	as	follows:		

A. Image	/	Video	Acquisition	
a. Read	Source	

B. Image	Preprocessing	
a. Resize	image	
b. Image	conversion	
c. Morphological	operation	
d. Image	filtering	

C. Feature	Extraction	
a. Color	detection	
b. Edge	detection	
c. Corner	detection	
d. Keypoint	Detection	
e. LBP	
f. Feature	Representation	

D. Image	Classification	
a. Crisp	Classification	
b. Fuzzy	Classification	

Please	note	that	the	computer	vision	functions	used	in	this	toolbox	is	built	on	top	of	the	existing	well-
known	 libraries	 in	Python	which	are	Opencv,	 scikit-image,	and	 scikit-learn	 library	except	 the	FQRC	
toolbox.	For	simplicity,	the	necessary	functions	are	packaged	in	a	main	python	library	namely	FCVT.	
The	overview	of	our	toolbox	is	illustrated	in	Figure.	1.	

Image/Video	
Acquisition	

Image	
preprocessing	

Feature	
Extraction	

Classification	/	
Interpretation	
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Figure	1:	Overview	of	FCVT	

	

User	can	import	FCVT	to	access	all	the	functions	in	the	toolbox	and	each	of	them	will	be	discussed	in	
this	tutorial.	 

import FCVT as fcvt 
 
 

	 	

Python	file	is	provided:	
FQRC.py	

Sample	images	and	
the	training	and	
testing	dataset	used	
in	this	tutorial	are	
provided.	

Python	file	is	provided:	
FCVT.py	

Examples	used	in	this	
tutorial	are	provided:	
Main.py	

Installation	
guide	is	
provided	
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Section	A:	Image	Acquisition	
(1)	Read	Source	
For	a	computer	vision	application,	the	process	begin	with	acquiring	image	or	video	as	the	input	for	
further	processing.	By	using	FCVT,	this	step	can	be	done	by	calling	the	“IA_readSource”	function	with	
the	directory	is	provided	in	full	or	merely	filename	(if	the	file	is	in	the	local	folder).	The	user	can	indicate	
“display =True”	to	visualize	the	image.	

 
IA_readSource( sourceDir, display ) 
 
Sample Code: 
sourceDir = 'Lenna.png'  
image = fcvt.IA_readSource(sourceDir, display=True) 
 

	

 
Output: 
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Section	B:	Image	Pre-Processing	
(1):	Image	resize	
An	image	can	be	resized	with	the	“IP_resize”	function	where	“sx”	and	“sy”	indicate	the	scale	that	
the	image	to	be	resized	(Example:	0.5	means	to	downsize	the	image	into	½	of	the	original	size).		

	
 
IP_resize(image, sx, sy, display) 
 
Sample Code: 
imageResize = fcvt.IP_resize(image, 0.5, 0.5, True)  
 

	
 
Output: 

   
(Original Image)    (Resized Image) 
 

	
(2):	Image	conversion	
There	are	sometimes	an	image	is	preferable	to	be	converted	into	different	color	space	to	simplify	or	
to	 support	 the	 later	 processes	 such	 as	 feature	 extraction.	With	 FCVT,	 user	 can	 easily	 convert	 to	
grayscale	or	binary	image	from	color	image	with	the	following	functions.	

*	Note:	The	threshold	for	the	binary	conversion	is	using	Otsu	method	[Otsu,	1979].		

 
IP_convertGray(image, display) 
IP_convertBinary(image, display) 
 
Sample Code: 
imageGray = fcvt.IP_convertGray(image, True) 
imageBinary = fcvt.IP_convertBinary(image, True) 
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Output: 

   
 

	
(3):	Image	Morphological	Operations	
Images	may	contain	numerous	 imperfections.	 In	particular,	 the	binary	 regions	produced	by	simple	
thresholding	are	distorted	by	noise	and	texture	(example,	gaps	between	the	pixels).	Morphological	
image	processing	pursues	the	goals	of	removing	these	imperfections	by	accounting	for	the	form	and	
structure	of	the	image.	Morphological	operators	often	take	a	binary	image	and	a	structuring	element	
as	input	and	combine	them	using	a	set	operator	(intersection,	union,	inclusion,	complement).	They	
process	objects	 in	 the	 input	 image	based	on	characteristics	of	 its	shape,	which	are	encoded	 in	the	
structuring	element.	There	are	four	common	types	of	morphological	operations	which	are;	erosion,	
dilation,	opening	and	closing.		

	

Figure	2:	Dilation	with	structuring	element	as	(b)	

	

Figure	3:	Erosion	with	structuring	element	as	(b)	
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Following	lines	perform	morphological	operation	with	a	Digit	image.	

*Note:	The	method	argument	can	be	the	followings:	

i. erosion	
ii. dilation	
iii. open	(Erode	then	dilate)	
iv. closing	(Dilate	then	erode)	

And	the	kernel	is	the	size	of	kernel	specify	in	python	tuple,	example,	(3,3)	for	3x3	kernel.	

 
IP_imageMorph(image, method, kernelSize, display) 
 
Sample Code: 
imageDigit = fcvt.IA_readSource('Digit3.png', True) 
imageMorph = fcvt.IP_imageMorph(imageDigit, 'erosion', (3,3), True) 
imageMorph = fcvt.IP_imageMorph(imageDigit, 'dilation', (5,5), True) 
imageMorph = fcvt.IP_imageMorph(imageDigit, 'opening', (3,3), True) 
imageMorph = fcvt.IP_imageMorph(imageDigit, 'closing', (5,5), True) 
 

	

 
Output: 

  
(Original Image)  
 

  
(Erosion – The noise are eliminated) (Dilation – The gap are connected) 
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(Open-Erode then dilate)   (Close-Dilate then erode) 
 

	
(4):	Image	Filtering	
Image	noise	is	random	(not	present	in	the	object	image)	variation	of	brightness	or	color	information	
in	 images.	 It	 is	 an	 unwanted	 signal	 that	 could	 be	 an	 obstacle	 in	 the	 later	 processes	 (e.g.	 feature	
extraction)	and	 it	might	affect	 the	overall	 system	performance.	Thus,	 it	 is	 important	 to	have	noise	
removal	in	the	image	preprocessing	step.	Following	lines	demonstrates	noise	removal	by	using	three	
different	filters	(Average,	Gaussian,	and	Median)	on	camera	man	image	with	salt	and	pepper	noise.	

*Note:	The	method	argument	can	be	the	followings:	

i. average	
ii. Gaussian		
iii. median	

And	the	kernel	is	the	size	of	kernel	specify	in	tuple,	example,	(3,3)	for	3x3	kernel.	

 
IP_imageFilt(image, method, kernel, display) 
 
Sample Code: 
imageCameraman = fcvt.IA_readSource('cameraman_noise.jpg', True) 
imageFiltered = fcvt.IP_imageFilt(imageCameraman, 'average', (10,10), True) 
imageFiltered = fcvt.IP_imageFilt(imageCameraman, 'gaussian', (5,5), True) 
imageFiltered = fcvt.IP_imageFilt(imageCameraman, 'median', (3,3), True) 
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Output: 
 

			 	
(Original	image	with	Salt	and	pepper	noise)										(Result	from	Average	filter)	
	

	 				 	 	
	(Result	from	Gaussian	filter)	 	 	 	(Result	from	median	filter) 
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Section	C:	Feature	Extraction	
(1):	Visual	Features	
(a):	Color	Detector	
A	digital	image	is	normally	represented	using	RGB	color	space	in	three-dimensional	matrix	with	each	
dimension	 representing	 the	 intensity	 value	 of	 Red,	 Green,	 and	 Blue	 respectively.	 The	 intensity	 is	
normally	from	0	to	255.		

	

Figure	4:	Components	of	color	image	

Color	is	very	useful	visual	features	that	commonly	used	to	segment	a	region	of	interest	from	an	image.	
Following	provide	an	example	to	segment	different	regions	from	the	map	image	using	color	feature	
and	visualize	it	in	different	windows	such	as	lake,	road,	field,	and	housing	area.	This	can	be	easily	done	
by	distinguish	each	of	them	using	the	different	range	of	RGB	values.	You	may	check	the	RGB	values	
for	 the	 map	 using	 the	 following	 website:	 http://imagecolorpicker.com/.	 The	 lowerbound	 and	
upperbound	in	the	example	indicate	the	python	list	with	[R,	G,	B]	value.	

 
FE_colorDetection(image, lowerbound, upperbound, display) 
 
Sample Code: 
imageMap = fcvt.IA_readSource('map.png', True) 
imageColor = fcvt.FE_colorDetection(imageMap, lowerbound, upperbound, True) 
 
	

 
Output: 

				
	

The	intensity	value	for	each	
pixel	in	the	R,	G	,B	layer	is		
normally	from	0	to	255.	
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lowerbound = [120,185,240]   lowerbound = [245,205,100]  
upperbound = [150,205,260]   upperbound = [265,230,170] 
 

   
lowerbound = [204,220,179]   lowerbound = [235,214,228]  
upperbound = [224,240,199]   upperbound = [255,254,248] 
  

	
(b):	Edge	Detector	
Edge	of	an	image	is	detected	by	the	capturing	the	sharp	changes	in	the	image	brightness.	It	provides	
the	contour	information	or	an	outline	of	an	object.	Depends	on	the	application,	by	applying	an	edge	
detection	algorithm	to	an	image	may	significantly	reduce	the	amount	of	data	to	be	processed	in	the	
next	processing	stage.	It	can	therefore	filter	out	information	that	may	be	regarded	as	less	relevant,	
while	 preserving	 the	 important	 structural	 properties	 of	 an	 image.	 Following	 example	 used	 canny	
operator	[Canny,	1986]	to	extract	the	edge	of	the	Chessboard	image.	

 
FE_edgeDetection(image, method, display) 
 
Sample Code: 
imageChessboard = fcvt.IA_readSource('imageChessboard.png', True) 
imageEdge = fcvt.FE_edgeDetection(image, True) 
 
	

 
Output: 
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(c):	Corner	detector	
Same	as	 color	 and	edge,	 corner	 is	 another	 visual	 feature	 that	provide	 structure	 information	of	 an	
image.	In	FCVT,	Harris	corner	detector	[Harris	&	Stephens,	1988]	 is	used	to	extract	the	corner	of	a	
given	 image.	 An	 example	 is	 provided	 below	 showing	 the	 effectiveness	 of	 the	 corner	 detector	 in	
extracting	all	the	corner	from	the	chessboard	image.		

 
FE_cornerDetection(image, display) 
 
Sample Code: 
imageChessboard = fcvt.IA_readSource('imageChessboard.png', True) 
imageCorner = fcvt.FE_cornerDetection(image, True) 
 
	

 
Output: 

				 	
*	The	corners	are	indicate	by	a	red	dot. 
 
	

(2):	Holistic	Image	Features	
(a):	Local	Binary	Pattern	detector	
Local	Binary	Pattern	(LBP)	[He	&	Wang,	1990]	 is	an	image	descriptor	generated	for	classification	in	
computer	 vision.	 It	 is	 widely	 used	 in	 two-dimensional	 texture	 analysis.	 LBP	 is	 simple	 yet	 efficient	
texture	operator	which	labels	the	pixels	of	an	image	by	thresholding	the	neighborhood	of	each	pixel	
and	considers	 the	 result	as	a	binary	number	as	 shown	 in	Figure	5.	 It	 is	 also	 robust	 to	 illumination	
change	 and	 its	 simplicity	 makes	 it	 possible	 to	 analyze	 images	 in	 challenging	 real-time	 settings.	
Generally,	block	approach	 is	employed	to	obtain	 the	 local	LBP	descriptor	 for	every	 local	block	and	
concatenate	together	to	generate	a	descriptor	to	describe	or	represent	the	image.	The	algorithm	that	
extract	one	descriptor	to	describe	a	whole	image	is	called	a	holistic	image	feature.	
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Figure	5:	LBP	feature	extraction	(Image	adopted	from	Wikipedia)	

 
FE_LBPDetection(image, method, display) 
 
Sample Code: 
imageLBP = fcvt.FE_LBPDetection(image, 'uniform', True) 
 
	

 
Output: 
 
imageLBP = [0.0467 0.0318 0.0178 0.0116 0.0085 0.0074 0.0070 0.0080 0.0095 0.0128 
0.0201 0.0408 0.0603 0.0443 0.0212 0.0142 0.0096 0.0083 0.0075 0.0079 0.0097 0.0131 
0.0191 0.0298 0.0522 0.4810] 
 
* The histogram of the LBP feature.  
 
	

(3):	Local	Image	Features	
(a):	Keypoint	detector	
Unlike	LBP,	keypoint	detector	generates	a	collection	of	feature	descriptor	that	describe	the	interest	
point	towards	the	object(s)	in	an	image.	The	descriptors	extracted	from	a	training	image,	can	then	be	
used	to	identify	the	object	when	attempting	to	locate	the	object	in	a	test	image	containing	many	other	
objects.		
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Figure	6:	Image	recognition	with	keypoint	(Image	adopted	from	google	image)	

To	perform	reliable	recognition,	it	is	important	that	the	features	extracted	from	the	training	image	be	
detectable	even	under	changes	in	image	scale,	orientation	and	illumination.	Such	points	usually	lie	on	
high-contrast	regions	of	the	image,	such	as	object	edges.	The	extracted	keypoints	do	not	restrict	on	
the	location	in	an	image	which	means	that	the	relative	positions	between	them	in	the	original	scene	
and	testing	 image	shouldn't	change	from	one	 image	to	another.	Scale	 Invariant	Feature	Transform	
(SIFT)	 [Lowe,	 2004],	 and	 Speeded	 up	 robust	 features	 (SURF)	 [Bay	 et	 al.,	 2008]	 are	 two	 notable	
keypoints	 detector	 in	 computer	 vision.	 SIFT	 uses	 Scale-space	 extrema	 detection	 with	 the	 aid	 of	
Difference	 of	Gaussian	 (DoG)	 and	 	Orientation	 assignment	 to	 achieve	 the	 robustness	 in	 scale	 and	
orientation	 invariant	 (refer	 to	 Figure	 7).	 On	 the	 other	 hand,	 SURF	 extract	 the	 keypoint	 by	
approximation	of	the	determinant	of	Hessian	blob	detector	with	a	precomputed	integral	image.	SURF	
is	claimed	to	faster	than	SIFT	in	the	processing.		

	

	 	

Figure	7:	SIFT	feature	extraction	(Image	adopted	from	google	image)	

*Note:	The	method	argument	can	be	the	followings:	

i. SIFT	
ii. SURF	

 
FE_keypointDetection(image, method, display) 
 
Sample Code: 
imageKeyPoint = fcvt.FE_keypointDetection(image, 'SIFT', True) 
imageKeyPoint = fcvt.FE_keypointDetection(image, 'SURF', True) 
 
 

(Descriptor	with	128	dimensions)	
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Output: 

  
            (SIFT keypoints)     (SURF keypoints) 
 
 

(4):	Feature	Representation	using	Bag	of	Feature	(For	keypoints	detector)	
In	computer	vision,	a	descriptor	(feature	vector)	is	used	to	represent	an	image	or	a	video	event.	The	
descriptors	 of	 images	 from	 a	 dataset	 will	 be	 used	 to	 train	 a	 classifier	 with	 Supervised	 Learning	
approach	(e.g.	Support	Vector	Machine)	to	generate	a	classifier	(so	called	trained	model)	that	can	be	
applied	later	in	image	classification	task.	Holistic	feature	like	LBP	provides	us	a	descriptor	that	describe	
the	whole	image	but	local	features	such	as	keypoints	detector	generates	numerous	descriptors	from	
one	 image.	 In	 image	classification,	only	one	descriptor	per	 image	will	 feed	 for	 training	and	 testing	
purpose.	This	makes	local	features	having	difficulty	to	directly	used	in	classification	step.	In	this	tutorial,	
Bag	of	Feature	(BoF)	[Fei-Fei	&	Perona,	2005]	approach	is	introduced	as	the	solution.		

	

Figure	8:	Overall	BoF	framework.		
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BoF	origins	from	Bag	of	Words	[Salton	&	McGill,	1983]	with	the	objective	to	classify	a	document	by	
computing	 the	 frequency	of	words	 in	dictionary.	This	approach	has	proven	to	works	well	 in	 image	
classification	[Fei-Fei	&	Perona,	2005].	The	overall	process	of	BoF	is	shown	in	Figure	8.	

The	 local	 features	 (e.g.	 keypoint)	 are	 first	 assigned	 to	 respective	 cluster	 by	 using	 Unsupervised	
Learning	approach	 (e.g.	kmeans	clustering)	and	each	cluster	 is	 called	a	Codeword.	The	Codewords	
form	a	dictionary	call	codebook.	The	descriptor	of	an	image	is	form	by	computing	the	frequency	of	
codewords	that	are	available	in	the	codebook.	This	step	is	called	Quantisation.	In	the	later	stage,	the	
descriptors	generated	from	the	dataset	can	be	used	to	train	the	classifier	for	recognition	purpose.	In	
general,	image	from	the	same	class	will	have	similar	composition	of	the	codewords.		Below	are	the	
two	functions	to	generate	codebook	once	the	local	features	are	extracted:	

 
FE_Clustering(feaMat, clusterNo) 
FE_Quantisation(imageKeyPoint, cluster) 
 
Sample Code: 
cluster = fcvt.FE_Clustering(imageKeyPoint , 5) 
descriptor = fcvt.FE_Quantisation(imageKeyPoint, cluster) 
 
 

 
Output: 
Descriptor = [34 65 78 23 12] 
 
* The descriptor is the frequency of the codewords appear in the respective image. 
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Section	D:	Image	Classification		
Image	Classification	is	a	task	of	assigning	an	input	image	with	label	from	a	fixed	set	of	categories.	First,	
a	sufficient	amount	of	training	images	from	different	classes	(E.g.	Figure	9)	are	used	to	train	a	classifier	
and	the	classifier	will	be	used	to	classify	a	testing	image	into	respective	class.	OSR	scene	dataset	[Oliva	
&	Torralba,	2001]	 is	used	 in	 this	 tutorial	and	 is	available	 from	http://people.csail.mit.edu/torralba	
/code/spatialenvelope/.	

Figure	9:	Training	Images  

	

					 					  	

							(a)	Coast	 	 																		(b)	?	 	 																(c)	Forest	

Figure	10:	Testing	Images	

	
The	conventional	goal	of	the	classification	tasks	is	to	assign	an	unknown	scene	image	to	one	of	the	
several	 possible	 classes.	 For	 example,	 Fig.	 10(a)	 is	 a	 Coast	 class	 while	 Fig.	 10(c)	 is	 a	 Forest	 class.	
Intentionally,	most	state-of-the-art	approaches	 in	 image	classification	are	exemplar-based	and	due	
the	images	used	are	mutually	exclusive	to	each	other.	However,	this	has	over	simplifies	the	complex	
real	world	problem	to	a	simple	Crisp	classification	task.	As	a	result	of	this,	classification	errors	often	
occur	when	the	image	classes	that	are	overlap	in	the	selected	feature	space.	For	example,	it	is	unclear	
that	in	Fig.	10(b)	is	a	Coast	class	or	a	Forest	class.		

In	many	cases,	complex	real	world	images	are	non-mutually	exclusive	where	different	people	are	likely	
to	 respond	 inconsistently.	 For	 examples,	 scene	 understanding,	 human	 motion	 analysis,	 emotion	
recognition,	etc.	 Inspired	by	the	fuzzy	set	theory	proposed	by	Lotfi	Zadeh	[Zadeh,	1965],	 this	work	
study	the	effectiveness	of	using	Fuzzy	Qualitative	Rank	Classifier	(FQRC)	[Lim	et	al.,	2014]	to	relax	the	
assumption	that	 the	aforementioned	cases	are	mutually	exclusive.	Therefore,	 these	 images	can	be	
somewhat	arbitrary	and	possibly	sub-optimal.	

Class:	Coast	 Class:	Forest	
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This	 tutorial	 covers	 both	 Crisp	 classification	 and	 FQRC	 classification.	 In	 FCVT	 toolbox,	 the	 image	
classification	task	can	be	done	by	simply	invoke	the	following	function.		

 
Image_classification(Train_folder, Test_folder, feature, method) 
 
		

User	 is	only	 require	 to	provide	the	directory	of	 the	train	 folder,	 test	 folder,	 type	of	 feature	(‘SIFT’,	
‘SURF’,	or	‘LBP’),	and	classification	method	(‘Crisp’	or	‘Fuzzy’).	The	user	may	put	as	many	classes	in	the	
training	 folder	 and	 testing	 folder	 with	 additional	 folder	 named	 “classX”	 for	 training	 and	 testing	
purpose.	No	limit	on	the	amount	of	testing	and	training	data	but	the	processing	time	and	visualization	
might	be	affected.	

	

(1)	Crisp	Classification	
(a)	SVM	Classification	
Support	vector	machine	(SVM)	is	a	supervised	learning	model.	Given	a	set	of	training	examples,	each	
marked	as	belonging	to	one	or	the	other	of	two	categories,	an	SVM	training	algorithm	builds	a	model	
that	assigns	new	examples	to	one	category	or	the	other.		

	

Figure	11:	Illustration	of	SVM	

	

(b)	Image	Classification	with	Crisp	Approach	
SVM	 is	applied	 in	 the	Crisp	 classification	where	 the	output	of	 the	 classification	 results	are	 in	 crisp	
whereby	here	is	determined	by	the	index	of	the	class	in	the	training	folder.	For	example,	if	the	system	
is	trained	with	two	classes	as	input	from	the	training	folder,	the	output	will	be	either	[0]	to	indicate	
the	image	that	belongs	to	first	category,	and	[1]	to	the	second	category.	Subsequent	numbers	will	be	
used	if	the	class	in	the	training	folder	is	more	than	two.		

	

 
Sample code: 
Output_crisp = fcvt.Image_Classification('Training', 'Testing', 'SIFT', 'Crisp') 
 
	

	

	

	

	



FUZZY	COMPUTER	VISION	TOOLBOX	 	 FUZZ	2017	

	pg.	20	

Output:	

	 	 	
	
(2)	Fuzzy	Classification	(FQRC)	[Lim	et	al.,	2014]	
It	is	undeniable	that	crisp	classification	approach	works	well	in	many	classification	tasks	but	limited	to	
the	images	or	objects	that	are	mutually	exclusive.	However,	Ambiguity	or	uncertainty	is	a	pervasive	
element	 of	 many	 real-world	 decision	 making	 processes.	 Variation	 in	 decisions	 is	 a	 norm	 in	 this	
situation	when	the	same	problem	is	posed	to	different	subjects.	Computer	vision	tasks	such	as	scene	
understanding,	 emotion	 detection,	 and	 human	 motion	 analysis	 are	 fall	 into	 this	 category.	
Unfortunately,	crisp	classifier	is	unable	to	deal	with	the	uncertainty	or	ambiguous	cases	effectively	as	
the	classifier	will	assign	one	and	only	label	to	each	testing	image.	

As	a	solution,	Fuzzy	approach	is	applied	to	relax	the	above	issue.	Fuzzy	set	theory	[Zadeh,	1965]	 is	
widely	used	in	control	system	nowadays	with	incorporation	of	Fuzzy	Inference	System	(FIS).	But,	 in	
the	nature	of	computer	vision	task,	it	is	likely	to	deal	with	high	dimensional	feature	input.	This	cause	
some	issues	to	directly	apply	FIS	in	the	work.	The	issues	are:	

i. Tedious	job	in	manually	determine	the	membership	function	for	each	feature.	
ii. Almost	impossible	to	produce	the	associate	rules	for	high	dimension	feature	space.		
iii. Complex	in	inference	based	on	extensive	rules.	

With	this,	FQRC	is	proposed	with	the	strength	in	capable	of	performing	feature	learning	to	automate	
the	fuzzy	membership	generation,	and	the	inference	is	not	governed	by	any	rules.	At	the	end	of	the	
process,	FQRC	 is	 capable	of	generate	 the	answer	 in	 terms	of	 the	 ranking	 result	annotate	different	
confident	values.	Such	interpretation	is	closer	how	human	perform	reasoning	to	the	ambiguous	cases.	
FQRC	 consists	 of	 four	 stages:	 1)	 Pre-processing	 (feature	 extraction);	 2)	 Learning	 model	 (fuzzy	
membership	 generation);	 3)	 Inference	 and	 4)	 Ranking	 interpretation	 as	 illustrated	 in	 Figure	 12.	
Interested	reader	can	download	the	paper	from	http://cs-chan.com/doc/TFS2014.pdf.	



FUZZY	COMPUTER	VISION	TOOLBOX	 	 FUZZ	2017	

	pg.	21	

	

Figure	12.	Overall	steps	for	FQRC	(image	adopted	from	[Lim	et	al.,	2014])	

	
The	pre-processing	step	also	known	as	feature	extraction	step	that	has	been	explained	in	the	previous	
session.	 The	 FQRC	 can	 support	most	 of	 the	 feature	 descriptors	 such	 as	 LBP,	 SIFT,	 and	 SURF	with	
variance	in	performances	depend	on	the	nature	of	the	application.		This	toolbox	mainly	focus	on	the	
automated	membership	generation	and	the	inferencing.		

	

(a)	Fuzzy	membership	generation	(Data	driven)	
First,	 the	 toolbox	will	 generate	 the	membership	 function	 for	 every	 feature	 dimension	 (number	 of	
feature	dimension	depends	on	the	feature	descriptor).	Theoretically,	in	the	learning	model,	it	learns	
the	image	data	with	parametric	approximation	of	the	membership	function	where	the	membership	
distribution	of	a	normal	convex	fuzzy	number	is	approximated	by	the	4-tuple,	𝑚𝑓	 = 	 𝑎	𝑏	𝛼	𝛽 	[Liu	&	
Coghill,	2009]	with	the	condition	𝑎	 < 	𝑏	and	𝑎𝑏	 > 	0.	There	will	be	𝐽	×	𝐾	matrix	containing	4-tuple	
for	each	feature	number,	𝑗	and	class,	𝑘	denoted	by	𝑓𝑞𝑚𝑓.	Those	4-tuples	are	represented	in	the	form	
as	𝑚𝑓23.		

𝑓𝑞𝑚𝑓 =
𝑚𝑓44 ⋯ 𝑚𝑓46
⋮ ⋱ ⋮

𝑚𝑓94 ⋯ 𝑚𝑓96
	

Nonetheless,	histogram	analysis	is	chosen	to	learn	the	4-tuple	fuzzy	number	as	illustrated	in	Fig.	13.	
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Figure	13.	membership	generation	from	histogram	

Figure	13	illustrates	the	parametric	representation	of	a	histogram,	𝑥	is	the	feature	value,	𝑛	denotes	
the	occurrence	of	training	data	from	its	respective	bin	𝑛4,	𝑛<,	…	𝑛=.	𝑎	and	𝑏	represent	the	lower	and	
upper	bound	of	𝜇,	while	𝑎 − 𝛼,	and	𝑏 + 𝛽	represent	the	minimum	and	maximum	of	𝑥	value.	The	
dominant	region	is	the	area	of	[𝑎, 𝑏].	

Where,	

,		with	𝑛D > 0	

In	the	toolbox,	the	function	that	build	the	membership	function	is:	

 
build4tuplesMF(feaMat , binNum) 
 
	

 
Method Implementation: 
 
def build4tuplesMF(feaMat , binNum): 
     
    # Parameters initialization 
    B = binNum #num of bin 
    feaMat = feaMat #feature matrix 
    J = feaMat.shape[1] #num of features (also indicate that num of 4-tuples 
membership function will be builded at the end) 
    mf = np.zeros((J,4)) 
    mu = []; 
     
    for j in range(0,J): #start building MF 
        # calculate the bin width, v 
        v = (float(np.amax(feaMat[:,j])) - float(np.amin(feaMat[:,j]))) / float(B)             
                   
        # count the ocurrence of the data in the bin and represent in histogram 
        h = np.histogram(feaMat[:,j],B); 
        N = h[0] 
        xout = h[1]         
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        # calculate how many bins which have distributed data > 0 (denoted as b) 
        b = 0 
        for n in range(0,len(N)): 
            if (N[n] > 0): 
                b = b + 1; 
         
        # Calculate mean value for the histogram  
        histMean = float(sum(N)) / b; 
                       
     
        """ 
        % Find 4-tuple trapezoid position from histogram 
        %     _________ 
        %    /|       |\ 
        %   / |       | \ 
        %  /  |       |  \ 
        % c   a       b   d 
        % 
        % a-c : alpha 
        % d-b : beta 
        % 4-tuple = [a,b,alpha,beta] 
        """ 
         
        # Scan from left to right to obtain a value  
        for n in range(0,len(N)): 
           if(N[n] >= histMean): 
               a = xout[n] #include the offset to get the lower boundary of that bar 
               break 
            
        # Scan from right to left to obtain b value 
        for n in range(len(N)-1,-1,-1): 
            if(N[n] >= histMean): 
                b = xout[n+1] #include the offset to get the upper boundary of that 
bar  
                break 
             
        # obtain a value  
        c = xout[0] - v;     
     
        # obtain b value 
        d = xout[len(xout)-1] + v; 
                 
        # compute alpha 
        alpha = a - c; 
         
        # compute beta 
        beta = d - b; 
         
        # Output 
        mf[j,:] = [a,b,alpha,beta] 
        mu.append([histMean, N, xout])            
 
    return mf,mu 
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Besides	that,	the	toolbox	also	provides	the	visualization	facility	to	view	your	generated	membership	
functions	or	the	histograms.	

 
mfVisualize(fqmf) 
    
histVisualize(fqmf, fqmf_mu) 
 
	

As	an	example,	if	I	want	to	generate	the	membership	functions	for	the	feature	vectors	with	three	
dimenions	from	six	inputs	:	

 
Sample code: 
a = np.array([(1,4,6),(2,5,7),(2,5,8),(3,4,8),(3,5,7),(2,6,9)]) 
mf,mu = build4tuplesMF(a,3) 
mfVisualize(mf) 
histVisualize(mf,mu) 
     
	

 
Output: 
 
mf =  
array([[ 1.66666667,  3.        ,  1.33333333,  0.66666667], 
       [ 4.        ,  5.33333333,  0.66666667,  1.33333333], 
       [ 7.        ,  9.        ,  2.        ,  1.        ]]) 
 
Mu =  
[[2.0, 
  array([1, 3, 2], dtype=int64), 
  array([ 1.        ,  1.66666667,  2.33333333,  3.        ])], 
 [2.0, 
  array([2, 3, 1], dtype=int64), 
  array([ 4.        ,  4.66666667,  5.33333333,  6.        ])], 
 [2.0, array([1, 2, 3], dtype=int64), array([ 6.,  7.,  8.,  9.])]] 
 
 
Computer Visualization: 
 

		 	
(Membership	functions)		 	 	 					(Histograms) 
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(b)	Inference	
The	goal	here	is	to	relax	the	mutually-exclusive	assumption	on	the	image	data	and	classify	an	unknown	
scene	 class	 into	 their	 possibility	 classes	 instead	 of	 just	 one.	 This	 is	 unlike	 the	 conventional	 fuzzy	
inference	engine	that	the	defuzzification	step	eventually	derives	a	crisp	decision.	Given	a	testing	image	
and	 its	 respective	 feature	 values	𝑥 ,	 the	membership	 value	µ	of	 feature	𝑗 	belong	 to	 class	𝑘 	can	 be	
approximated	by		

	

This	is	then	used	to	calculate	the	product,	𝑃3 	of	membership	values	of	all	the	attributes	for	𝑘	class,	
next	in	the	reference,	to	generate	the	ranking	result,	𝑃3is	normalized	against	the	sum	of	𝑃	of	all	classes	
and	denoted	as	𝑟3 	.	

 

 

In	the	toolbox,	the	inference	result	can	be	obtained	by	first	determine	the	membership	value:	

 
membershipVal(feature_value, mf) 

 
 
 
Method Implementation: 
 
def membershipVal(fvalue, mf): 
    # mf -> 4-tuples number retrieve from FQRC (mf = [a b alpha beta]) 
    a = mf[0] 
    b = mf[1] 
    alpha = mf[2] 
    beta = mf[3] 
     
    if (fvalue >= a and fvalue <= b):      # f_value within [a,b] 
        degreeMF = 1     
    elif (fvalue >= a-alpha and fvalue < a):    # x within [a-alpha,a] 
        degreeMF = (fvalue - a + alpha) / alpha     
    elif (fvalue > b and fvalue <= b+beta):   # x within [b,b+beta] 
        degreeMF = (b + beta - fvalue) / beta     
    else: 
        degreeMF = 0     
 

return degreeMF 
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As	an	example:	

 
Sample code: 
mf = np.array([4, 5, 1, 1]) 
membership_degree = membershipVal(3.7, mf) 
 
 

 
Output: 
 
membership_degree = array([ 0.7 ]) 
 
 

 
 
 

then	followed	by	the	inference	method:	 

 
inference( feaVec, fqmf) 
 
 

 
Method Implementation: 
 
def inference( feaVec, fqmf): 
    J = len(fqmf[0]) #num of feature 
    K = len(fqmf) #num of class 
     
    # Obtain degree of membership for each feature value 
    feaDegreeMF = np.zeros((K,J)) 
 
    for k in range(0,K): 
        for j in range(0,J): 
            degreeMF = membershipVal(feaVec[j], fqmf[k][j]);        
            feaDegreeMF[k][j] = degreeMF; 
    
    temp = copy.copy(feaDegreeMF) 
    temp[feaDegreeMF > 0] = 1 
    hitCount = np.sum(temp,axis=1) 
    sumOfdegreeMF = np.sum(feaDegreeMF,axis=1) 
    ratio = np.divide(sumOfdegreeMF, np.amax(hitCount)) 
    sumRatio = sum(ratio) 
    normOfdegreeMF = np.divide(ratio,sumRatio) #Normalization 
    output = normOfdegreeMF 
     
    if(np.isnan(sum(output))==True or np.isinf(sum(output))==True): 
        output = np.zeros((1,K))     
    return output, feaDegreeMF 
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Similarly,	 the	 visualization	 to	 inspect	 the	 cross	 over	 degree	 of	 membership	 for	 each	 feature	
corresponds	to	all	classes	is	provided.	

 
infVisualize(fqmf) 
    
	

As	an	example:	

 
Sample code: 
a = np.array([(1,4,6),(2,5,7),(2,5,8),(3,4,8),(3,5,7),(2,6,9)]) # Class 1 
mf_a,mu_a = build4tuplesMF(a,3) 
 
b = np.array([(4,6,9),(4,7,10),(3,7,11),(5,7,10),(4,8,10),(5,8,11)]) # Class 2 
mf_b,mu_b = build4tuplesMF(b,3) 
 
mf_all = [] # To append membership functions for all classes 
mf_all.append(mf_a) 
mf_all.append(mf_b) 
 
feaVec = np.array([2.5,4.5,9.5]) # New input with feature values 
output,feaDegreeMF = inference(feaVec, mf_all) 
infVisualize(feaVec, mf_all, feaDegreeMF) 
 
	

 
Output: 
 
output = array([ 0.71428571,  0.28571429]) 
 
feaDegreeMF =  
array([[ 1.   ,  1.   ,  0.5  ], 
       [ 0.125,  0.   ,  0.875]]) 
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(c)	Classification	using	FQRC	
To	ease	the	user,	the	classification	using	FQRC	is	simplified	with	the	train	function	“CL_FQRC_Train”	
which	yield	the	membership	functions	(fqmf)	for	all	features	and	classes,	and	“CL_FQRC_Predict”	to	
predict	a	new	input	with	using	the	fqmf	generated	from	the	training	step.	User	can	choose	to	visualize	
the	result	by	inputing	“visualize=True”.		

CL_FQRC_Train(X_train, y_train, binNum, visualize) 
 
CL_FQRC_Predict(X_test, fqmf, visualize) 
	

In	 the	“CL_FQRC_Train”	 function,	user	 is	 require	 to	provide	 the	 feature	vectors	obtained	 from	the	
training	data	(X_train)	and	the	ground	truth	for	each	data	(y_train)	as	an	array.	

X	train	=		 	 	 	 	 	 	 	 	 		

Feature	j=1	 Feature	j=2	 Feature	j=3	

1	 4	 6	

2	 5	 7	

.	

.	

.	
4	 8	 10	

5	 8	 11	

	

 
Sample code: 
X_train = 
np.array([(1,4,6),(2,5,7),(2,5,8),(3,4,8),(3,5,7),(2,6,9),(4,6,9),(4,7,10),(3,7,11),(5
,7,10),(4,8,10),(5,8,11)]) 
x_groundTruth = np.array([0,0,0,0,0,0,1,1,1,1,1,1]) 
fqmf = CL_FQRC_Train(X_train, x_groundTruth, 3, True) 
 
feaVec = np.array([2.5,4.5,9.5]) %--> new testing input 
result = CL_FQRC_Predict(feaVec, fqmf, True) 
print 'output:' + str(output) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y_train	=		

GroundTruth	

0	

0	

.	

.	

.	
1	

1	
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Output: 
 

    
 
 

 
 

result: [0.71428571  0.28571429] 
 
	

One	can	notice	that	the	result	generated	he	is	not	a	crisp	outcome	but	the	membership	(confident)	
value	of	the	new	input	belongs	to	the	respective	class.	
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(d)	Image	Classification	with	Fuzzy	Approach	
User	can	use	the	following	code	to	perform	image	classification	with	the	FQRC.			

 
Sample code: 
Output_fuzzy = fcvt.Image_Classification('Training', 'Testing', 'SIFT', ‘Fuzzy’) 
 
	

Using	the	same	case	study	in	scene	understanding,	first	the	membership	function	for	each	feature	
and	class	is	generated	using	histogram.	The	output	is	shown	as	Figure	X,	and	Figure	X.	This	example	
is	using	SIFT	feature	with	BoF	of	five	clusters	(five	different	codewords	in	the	codebook).		

	

	

	

Based	on	the	number	of	class	in	the	train	folder,	the	system	automatically	generate	the	corresponding	
membership	function	that	represent	each	feature	dimension	for	each	class.		

	

	

Class:	Coast	 Class:	Forest	

Feature	1	

Feature	2	

Feature	3	

Feature	4	

Feature	5	
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Based	on	 the	generated	membership	 functions,	 inference	can	be	done	on	 the	 testing	 images.	The	
sample	output	are	as	follows:		

Output:	 

 

Class:	Coast	 Class:	Forest	

Feature	1	

Feature	2	

Feature	3	

Feature	4	

Feature	5	

Confident	as	
Coast	

Confident	as	
Forest	
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One	of	the	strengths	of	the	FQRC	is	it	provides	the	feasibility	to	perform	single-label	classification	
task	like	other	crisp	classifiers	as	well	as	ranking	as	shown	in	the	results.	

*	More	results	can	be	observed	from	the	python	program.	
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