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Abstract—Recently, Bandler-Kohout (BK) subproduct based
reasoning scheme has been a popular choice in various kind
of applications. In this paper, we aim to enhance the BK
subproduct based reasoning schemes in two aspects: (1) Extend
the BK subproduct in term of Interval Type-2 Fuzzy Sets (IT2FS)
instead of the ordinary Type-1 Fuzzy Sets (T1FS), and (2)
Introduce weight parameter to the reasoning scheme. Firstly,
studies have shown that IT2FS have better capability in handling
data with uncertainty compare to the ordinary T1FS. Thus,
we extend the BK subproduct in terms of IT2FS theory where
subsethood measure based on the fuzzy implication operators
for the IT2FS has been developed. Secondly, weight parameter
associated to each features is introduced to form a weighted
inference scheme with the BK subproduct. The introduction of
the weight parameter is to aid in distinguishing the influence of
different features in the reasoning process. In here, the Linguistic
Weighted Average (LWA) is adopted to solve the outputs of this
weighted reasoning scheme. Finally, a case study is employed to
demonstrate the capability of the proposed approach.

I. INTRODUCTION

Recent studies [1], [2] have risen the excellency of fuzzy
implication based deductive reasoning schemes, such as the
Bandler-Kohout (BK) subproduct [3], [4]. These studies
showed the BK subproduct based reasoning scheme able to
demonstrate and match all the important properties of the
much more popular reasoning scheme, namely the Compo-
sitional Rule of Inference (CRI) [5]. This has deducted that
BK subproduct is competent to form effective and efficient
inference engines if appropriate rules are given.

Apart from the rule based reasoning discussed in [1], [2],
BK subproduct also well known with its great achievements
in case based reasoning. Some successful examples that can
be found in the literature include medical expert systems [6],
[7], intelligent navigation systems [8], information retrieval
[9], land evaluation [10], cognitive sciences [11], scene un-
derstanding [12] and etc.

Despite of its successfulness, there are some limitations
associated in the current BK subproduct in case based rea-
soning. First of all, the implementations of BK subproduct in
the literature are still based on classical Type-1 Fuzzy Sets
(T1FS) theory, which address uncertainty with point-values.
Studies such as [13], [14] claimed that T1FS has its limitation
in addressing uncertainty with its crisp membership functions.
To improve the uncertainty handling of BK subproduct-based
inference engines, an extension to Interval Type-2 Fuzzy

Sets (IT2FS) [15], [16] is needed. Thus, in this paper, our
first contribution is to propose and extend the current BK
subproduct to IT2FS.

Secondly, BK subproduct performs inferences by utilizing
a set of common features that relate the inputs and outputs. In
most cases, the BK subproduct treats all the features equally,
i.e. the importance of all features are similar. However, in
practical, not all these features have the same influences
towards inference results, we argue that some features may
have higher reliability or distinguishability than the others,
and vice versa. Thus, our second contribution is to introduce
weight parameter in the BK subproduct.

Work that similar to us in this case is [10], however,
the implementation of the weight in this work required to
fullfill a condition:

∑N
i=1 wi = 1 where N is the number

of features and w is the weight of feature i. This condition
is too restrictive for good implementation of weight because:
(i) adding or decreasing features into consideration list will
cause recalculation of all the weights. For instance, adding a
new feature with weight wN+1 6= 0 to existing feature list will
cause the total weight become

∑N+1
i=1 wi. It is easy to verify

that
∑N+1
i=1 wi = 1 + wN+1 > 1 and the condition of total

weight equal to 1 is not longer valid. Thus, a normalization is
required so that the

∑N+1
i=1 wi = 1 is fulfilled. (ii) importance

or influence of a feature is not intuitive - i.e. comparing a
system with such condition to an implementation of weight
where wi ∈ [0, 1] for all i, the weights of the latter are much
intuitive as weights close to 0 means less influence, while
close to 1 means high influence. In [10], the weights can be
small numbers that close to 0 even if they have high influence
in the case of N is a big number. Furthermore, this problem
become much more complicated if new features are going to
be added into consideration as one may not know what are the
appropriate values that representing high (or low) influence. In
contrast to [10], our weight term is wi ∈ [0, 1] and condition:∑N
i=1 wi = 1 is not required.
The rest of the paper are arranged as follow: In Section

II, we provide a short revision on BK subproduct. Section
III discusses the extension of BK subproduct from T1FS to
IT2FS, along with a subsethood measure of IT2FS. In Section
IV, we introduce the weight parameter to this newly developed
IT2FS reasoning scheme. A case study is presented in Section
V for demonstration purpose. Lastly, we conclude the paper



in Section VI.

II. BACKGROUND

We start this section with a brief review on the definition
of BK subproduct on crisp relations.

Assume that A, B and C are three crisp sets and a, b
and c are general representation to the elements in the sets
respectively. R is defined as a relation from A to B such that
R ⊆ A × B; whereas S is a relation from B to C such that
S ⊆ B×C. The converse relation of S is denoted as ST . The
abbreviation aRb shows that a is in relation R with b. Bandler
and Kohout [4] defined (crisp) BK subproduct as follow:

Definition 1. BK subproduct is a composition of relations for
a and c such that:

R / S = {(a, c)|(a, c) ∈ A× C and aR ⊆ Sc} (1)

where aR = { b | aRb } is the image of a after the projection
of relation R in the set B, while Sc = { b | bSc } is the
image of c after the projection of relation ST in the set B.
BK subproduct is useful in retrieving relationships between
elements of two indirectly associated sets, objects A and
targets C, if both sets can be associated with a set of common
features, B.

Example 1 (Medical Inference Systems). Consider a set of Pa-
tients A, a set of Diseases C, and a set of Signs/Symptoms B.
R is the relation from A to B indicating the signs/symptoms
shown by patients, S is a relation from B to C, indicating
the signs/symptoms used to characterize the diseases. Hence,
BK subproduct a′(R/S) provides all diseases that may show
all signs/symptoms of patient a′. In another word, all the
signs/symptoms of patient a′ are subset(s) of signs/symptoms
of the disease(s) c.

It is trivial that Definition 1 is established on the subsethood
of aR in Sc. In order to extend it to fuzzy relations, the fuzzy
subsethood measure for T1FS is defined as:

Definition 2. For two T1FS, P and Q in the same universe
X , the possibility of P is a subset of Q is given as follow:

π(P ⊆ Q) =
∧
x∈X

(µP (x)→ µQ(x)) (2)

where → is fuzzy implication operators generally defined as
“NOT A OR B” and ∧ is the infimum operator. ∧ can be
considered as min function in harsh criterion or arithmetic
mean in mean criterion [4].

Definition 3. With Eq. (1) and Eq. (2), Bandler and Kohout
[4] defined the fuzzy BK subproduct as follow:

R / S(a, c) =
∧
b∈B

(Rab → Sbc) (3)

where Rab is the fuzzy degree to which aRb is true and Sbc
is the fuzzy degree to which bSc is true.

Later, De Baets and Kerre [17] discovered that the BK sub-
product demonstrated a limitation in a specific condition and
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Fig. 1. Two IT2FS P̃ and Q̃ in the same universe X . The primary
memberships for P̃ and Q̃ are denoted as Gx and Hx respectively. For Gx,
u denotes its secondary variable whereas u and u are its lower and upper
limits respectively. The area in light gray is the Footprint of Uncertainty of P̃
and its lower and upper membership functions (LMF and UMF) are labeled
in the figure.

improvement has been proposed by incorporating additional
term. However, recent work [18] discovered that the additional
term gives unwanted influence to the inference results. Thus,
in this paper, the original version of fuzzy BK subproduct is
employed as in [10].

III. BK SUBPRODUCT WITH INTERVAL TYPE-2 FUZZY
SETS

A. Interval Type-2 Fuzzy Sets

An Interval Type-2 Fuzzy Set (IT2FS) is a special case of
a Type-2 Fuzzy Set which the membership functions of an
element is not point-value but an interval [15], [16].

An IT2FS denoted as P̃ in universe X has elements x ∈ P̃ .
The membership functions of x are intervals Gx. We also name
these intervals as primary memberships. The lower and upper
endpoints of a Gx are given by an interval [u, u] where u are
called secondary variables.

If we depict all the primary memberships of x ∈ P̃ in a
2D graph, the area covered by those primary memberships
is the Footprint of Uncertainty (FOU) of P̃ , denoted as
FOU(P̃ ). The outer margin of the FOU is the upper bound
of FOU, called the Upper Membership Function (UMF), and
the lower margin of the FOU is the lower bound of FOU,
called the Lower Membership Function (LMF). An illustration
is provided in Fig. 1.

B. Subsethood Measure of IT2FS

As fuzzy implication operators are only defined for point
values, Eq. (2) needs to be extended so that the subsethood
measurements for IT2FS can be computed. For this purpose,
we incorporate the Representation Theorem [16].

Representation Theorem [16] suggests that an IT2FS can be
represented as a collection of embedded T1FS. Assume that
both axes x and u are discrete, an element xi ∈ P̃ where



i = {1, 2, · · · , I} has Ji discrete secondary variables in its
FOU, namely uij where j = {1, 2, · · · , Ji}. The number of
embedded T1FS in P̃ is:

ηP̃ =

I∏
i=1

Ji (4)

Since these embedded T1FS are distributed evenly, the number
of embedded T1FS pass through a secondary variable uij is
ηP̃
Ji

.
In order to define the fuzzy subsethood measure, or the

possibility P̃ is a subset of Q̃, i.e. π(P̃ ⊆ Q̃), we use the
notations of set Q̃ as shown in Fig. 1: the primary membership
of x ∈ Q̃ is Hx and secondary variable v, therefore Hx =
[v, v]. For an element xi, i = {1, 2, · · · , I}, Ki is the number
of discrete variables vik where k = {1, 2, · · · ,Ki}. The total
number of embedded T1FS in Q̃ is given by ηQ̃ =

∏I
i=1Ki

and number of embedded T1FS on a secondary variable vik
is

ηQ̃
Ki

.
To formulate the fuzzy subsethood measure of IT2FS, we

start with evaluating an arbitrary pair of secondary variables
uij and vik in P̃ and Q̃ respectively, on a same element xi.
The implication of these points to the subsethood measure
π(P̃ ⊆ Q̃) is uij → vik. However, since there are ηP̃

Ji

of embedded T1FS on uij and
ηQ̃
Ki

on vik, this implication
involves a number of ηP̃

Ji
× ηQ̃

Ki
pairs of embedded T1FS, thus

it should be represented as:
ηP̃ ηQ̃
JiKi

(
uij → vik

)
(5)

If uij is the only discrete point in Gx, the subsethood
measure can be evaluate by summing up the implication of
this secondary variable to all the vij (Fig 2):

ηP̃ ηQ̃
JiKi

Ki∑
k=1

(
uij → vik

)
(6)

In general cases, Gx are intervals with more then one
discrete points. Therefore, if we generalized Eq. (6) to all the
uij in the element and normalized it with the total number of
embedded T1FS ηP̃ ηQ̃, we have the fuzzy subsethood measure
for the element xi:

π(P̃ ⊆ Q̃)(xi) =
1

JiKi

Ji∑
j=1

Ki∑
k=1

(
uij → vik

)
(7)

If we substitute Eq. (7) to Eq. (2) and the mean criterion is
considered, the complete fuzzy subsethood measure for IT2FS
is:

π(P̃ ⊆ Q̃) =
1

I

I∑
i=1

1

JiKi

Ji∑
j=1

Ki∑
k=1

(
uij → vik

)
(8)

Employing a fuzzy implication operator, Eq. (8) will pro-
duce a subsethood measurement of P̃ ⊆ Q̃ in interval [0, 1].
However, we noticed that the subsethood measurements for
crisp sets are Boolean (yes / no) and for T1FS are point-values.
Therefore, we deduce that the fuzzy subsethood measurements
for IT2FS should be intervals instead of point-values as of
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Fig. 2. Implication of a single discrete secondary variable in primary
membership Gx of P̃ to all the discretized secondary variables in primary
membership Hx of Q̃

[19]–[22]. Studies in [3], [23], [24] suggested that Kleene-
Dienes and Łukasiewicz implication operators are among the
two most suitable candidates for lower and upper bounds
subsethood measurements. Thus, if Y = [Y , Y ] denotes lower
and upper bounds of a subsethood measure:

Y =
1

I

I∑
i=1

1

JiKi

Ji∑
j=1

Ki∑
k=1

(
uij →KD vik

)
(9)

Y =
1

I

I∑
i=1

1

JiKi

Ji∑
j=1

Ki∑
k=1

(
uij →Ł vik

)
(10)

where →KD and →Ł are Kleene-Dienes and Łukasiewicz
implication operators respectively:

α→KD γ = max (γ, 1− α) (11)

α→Ł γ = min (1, 1− α+ γ) (12)

C. Extension of Fuzzy BK Subproduct

Definition 1, 2 and 3 clearly showed that subsethood mea-
sure is the underlying idea of BK subproduct. Definition of
BK subproduct is subsethood measure of aR (image of an
object a in feature set B under relation R) in another set Sc
(image of a target c in feature set B under converse relation
S).

Thus, BK subproduct in term of IT2FS is ease to develop
once we able to retrieve the subsethood measure of IT2FS. It is
reasonable to assume that P̃ as aR̃ and Q̃ as S̃c. Due to the
similarity between BK subproduct and subsethood measure,
the notations used in the subsethood measure are used in BK
subproduct as well. I is the number of elements of B. Ji is
the interval that representing membership grade of aR̃bi and
uij are discretized values in the interval. Similarly, Ki is the
interval that representing membership grade of biS̃c and vik
are discretized values in Ki:

R̃ / S̃(a, c) =
1

I

I∑
i=1

1

JiKi

Ji∑
j=1

Ki∑
k=1

(
Rabij → Sbikc

)
(13)



Similar to Eq. (8), the results of Eq. (13) are intervals too.
If the lower and upper bounds of these intervals are denoted
as R̃/S̃ and R̃/S̃ respectively, with Eq. (11) and Eq. (12), we
obtain:

R̃/S̃(a, c) =
1

I

I∑
i=1

1

JiKi

Ji∑
j=1

Ki∑
k=1

max(Sbikc, 1−Rabij ) (14)

R̃/S̃(a, c) =
1

I

I∑
i=1

1

JiKi

Ji∑
j=1

Ki∑
k=1

min(1, 1−Rabij + Sbikc)

(15)

IV. WEIGHT IN BK SUBPRODUCT BASED INFERENCE
ENGINE

A. Weight and BK Subproduct

In most of the time, we can group criteria that we need
to consider into a few criteria sets during reasoning. Among
these criteria sets, some of them might have higher influence
over the others in a decision making process. For instance,
let us look back to Example 1. A physician may consider
the following 4 criteria sets during a medical diagnosis,
namely symptoms, patient personal history, family history
and environmental issues. However, not all the criteria sets
having the same influence in the medical diagnosis. In the
diagnosis of diseases such as breast cancer, physicians may
take more consideration on symptoms (higher influence) found
on patients compare to environmental issues (low influence).
Hence, weights are meaningful in representing the influence
of the criteria sets.

However, one should note that the weight should not be
confused with the strength of criteria in the criteria set. Similar
case is applied to inference engines based on BK subproduct.
Instead of criteria, features are considered here. Membership
functions of objects-features relations (R̃) and features-target
relations (S̃) are the “strength of criteria” that determine the
results of inferencing. While features forming feature sets,
influence of each feature sets are represented as weight. Weight
applies to each feature set and we model the weight with
IT2FS in this paper.

As mentioned earlier, subsethood measure is the fundamen-
tal of fuzzy BK subproduct. Thus, one might argue that it is
inappropriate to implement weight in BK subproduct based
inference engines because there is no well defined weighted
subsethood measure in the literature. In fact, the weights are
applied to the feature sets rather then the subsethood measure-
ments. We explain the argument with a multiple feature sets
model explained below.

Assume that the features in set B can be grouped into
multiple feature sets Bm, m = {1, 2, · · · ,M}. Each feature
set has a number of features. The relation between A and
Bm is R̃m, whereas S̃m is the relation between Bm and
C. In this case, the images of aR̃m and S̃mc are P̃m and
Q̃m respectively. Subsethood measure of P̃m ⊆ Q̃m gives
R̃m / S̃m(a, c) (Fig. 3).
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Fig. 3. Breaking up set B to multiple feature sets to form weighted BK
subproduct.

Each feature set carries different weight. Assume that the
weight of R̃m / S̃m(a, c) is W̃m, the normalized aggregation
of all the composition of relations is given as:

R̃ / S̃(a, c) =

M∑
m=1

W̃m

(
R̃m / S̃m(a, c)

)
M∑
m=1

W̃m

(16)

Eq. (16) gives the weighted measure of BK subproduct.
Here, since all R̃m / S̃m(a, c) are intervals that only exist as
numerators, whereas W̃m are IT2FS, the results of computa-
tions based on Eq. (16) are always IT2FS. We show the details
of solving Eq. (16) in the following subsection.

B. Solving the Weighted Average

Solving Eq. (16) is easy if all the parameters are crisp
numbers. However, these parameters are fuzzy, and so the
solution become slightly complicated, especially with a term
1/
∑M
m=1 W̃m. One of the closest problem as us that solved

in the literature is Fuzzy Weighted Average (FWA) [25]. FWA
solved the problems in the form of:

f =

M∑
m=1

ωmχm

/
M∑
m=1

ωm (17)

where all χm and ωm are T1FS. Wu and Mendel [26], [27]
extended FWA to form Linguistic Weighted Average (LWA),
which solve the problem where all χm and ωm are IT2FS.
Both FWA and LWA uses α-cut decomposition theorem [28]
in solving the problems. With α-cut decomposition theorem,
instead of performing calculation directly on the sets (χm and
ωm) as whole, a number of (δ − 1) α-cuts are taken to break
the sets into δ intervals. For each interval αι, 1 ≤ ι ≤ δ,
perform calculation that suppose to for the sets to yield an



TABLE I
THIS TABLE SHOWS Rab AND Sbc , THE RELATIONS BETWEEN THE THREE
PATIENTS IN SET A, ELEVEN FEATURES IN SET B AND A DISEASE IN SET

C .

Rab or Sbc a1 a2 a3 c1
b11 [0.1 , 0.3] [0.9 , 1.0] [0.4 , 0.5] [0.2 , 0.3]
b12 [0.2 , 0.3] [0.8 , 0.9] [0.7 , 0.8] [0.1 , 0.2]
b13 [0.3 , 0.5] [0.8 , 1.0] [0.6 , 0.9] [0.4 , 0.4]
b14 [0.7 , 0.8] [0.8 , 1.0] [0.8 , 0.9] [0.7 , 0.8]
b21 [0.9 , 1.0] [0.2 , 0.2] [0.7 , 0.8] [0.2 , 0.3]
b22 [0.6 , 0.7] [0.6 , 0.7] [0.7 , 0.8] [0.4 , 0.6]
b31 [0.7 , 0.9] [0.1 , 0.3] [0.7 , 0.8] [0.1 , 0.2]
b32 [0.8 , 0.9] [0.1 , 0.2] [0.7 , 0.8] [0.1 , 0.2]
b33 [0.6 , 0.7] [0.2 , 0.5] [0.1 , 0.1] [0.3 , 0.4]
b41 [0.9 , 1.0] [0.2 , 0.2] [0.0 , 0.1] [0.1 , 0.2]
b42 [0.8 , 0.9] [0.5 , 0.8] [0.1 , 0.1] [0.7 , 0.8]

interval fι. The composition of all the fι with corresponding
α-cuts will form the corresponding set f .

With the existing findings, Eq. (16) can be solved easily.
We adopted the solution of LWA in [26], [27] by assuming
that the intervals R̃m / S̃m(a, c) in Eq. (16) are special cases
of IT2FS, where these fuzzy sets have rectangle membership
functions and the UMF(R̃m/S̃m(a, c)) = LMF(R̃m/S̃m(a, c)).
From here onwards, we denote R̃m / S̃m(a, c) as Zm and the
lower and upper bounds of Zm are denoted as Zm and Zm
respectively. Thus, follow this notation scheme, R̃ / S̃(a, c) is
denoted as Z̃.

Since the FOU of Z̃ is determined by UMF(Z̃) and
LMF(Z̃), we can find Z̃ by calculating these two boundaries
only. In [27], Wu and Mendel proved that the height of the
output sets from LWA are equal to the minimum height of
all Zm and Wm. In our case, since all UMF(W̃m) are normal
and Zm are intervals, the height of an UMF(Z̃) is unity. On
the other hand, the height of a LMF(Z̃) is totally depends on
LMF(W̃m). Assume that all the W̃m are having trapezoidal (or
triangular) shape FOU, the shape of Z̃ should be trapezoidal
(or triangular) as well (Fig. 4).

As described earlier in this section, the solution of Eq. (16)
starts with taking (δ − 1) α-cuts to yield δ intervals for each
set. Thus, the rest of the work is simplified to find the intervals
that represent the FOU of Z̃ corresponding to each α-cut. For
this purpose, we refer to the notations that described in Fig.
4.

By referring to the results of LWA [26], [27], for each α-
cut, the corresponding boundaries of UMF(Z̃) and LMF(Z̃)
can be obtained by sorting Zm and Zm first, then substituting
the corresponding values into the following equations:

z1 =

∑β1

m=1 wm4Zm +
∑M
m=β1+1 wm1Zm∑β1

m=1 wm4 +
∑M
m=β1+1 wm1

(18)

z2 =

∑β2

m=1 wm3Zm +
∑M
m=β2+1 wm2Zm∑β2

m=1 wm3 +
∑M
m=β2+1 wm2

(19)

z3 =

∑β3

m=1 wm2Zm +
∑M
m=β3+1 wm3Zm∑β3

m=1 wm2 +
∑M
m=β3+1 wm3

(20)

TABLE II
INFERENCE RESULTS IF THE WEIGHTS ARE NOT CONSIDERED.

a1 a2 a3
c1 [ 0.48, 0.68 ] [ 0.61, 0.78 ] [ 0.54, 0.71]

z4 =

∑β4

m=1 wm1Zm +
∑M
m=β4+1 wm4Zm∑β4

m=1 wm1 +
∑M
m=β4+1 wm4

(21)

In these equations, β1, β2, β3 and β4 are the switching
points in the range [1,M ] calculated with Karnik-Mendel
algorithm [29], [30] such that:

Zβ1
≤ z1 ≤ Zβ1+1 (22)

Zβ2
≤ z2 ≤ Zβ2+1 (23)

Zβ3
≤ z3 ≤ Zβ3+1 (24)

Zβ4 ≤ z4 ≤ Zβ4+1 (25)

C. Results Interpretation

Compositions of the results obtained from Eq. (18)-(21)
give a set of IT2FS, and the meaning carried by this set of
IT2FS is application dependent. In some applications, ranking
algorithms suggested in [31], [32] are useful if comparisons
between these IT2FS are needed to find the highest order one.
Engineering control applications might fall to this category. In
some other cases, the results can be compared with a set of
predefined IT2FS using similarity measure [19], [32].

V. CASE STUDY

In this section, we extend Example 1 to a case study. The
purpose of this is to demonstrate the computation procedure
and the influence of weights in inferencing.

Consider A = {a1, a2, a3} as a set of three patients and
C = {c1} as a set with 1 disease. B is a set of 11 features
that can be used in this medical diagnosis. This features are
grouped into 4 sub feature sets (e.g: sign/symptoms, patient
history, family history, environmental issues) such that : B1 =
{b11, b12, b13, b14}, B2 = {b21, b22}, B3 = {b31, b32, b33} and
B4 = {b41, b42}. Table I shows the relations between A, B
and C. The weights of B1, B2, B3 and B4 are W1, W2, W3

and W4 respectively. Refer to Fig. 5 and Table IV for details
of these weights.

A. Results

If weights are not considered in this case, grouping all
features into multiple feature sets is meaningless. Thus, just
consider that B is a set with all the 11 features, applying Eq.
(14) and Eq. (15) give the results presented in Table II.

To consider the weights, firstly we compute the inference
results for each group of features using Eq. (14) and Eq. (15).
The results are presented in Table III.

As described in Section IV-B, solving this weighted BK
subproduct based inferencing need multiple α-cuts. However,
since all the membership functions in this case are trapezoidal,
three α or strong α-cuts is effective to compute the answer,
i.e. α=0+, 0.6 and 1.



W Z Zmm
~ ~

1 1 1

Z Zm m

wm1 wm2

wm3

wm4
z
1 z

2

z3

z
4

0 0 0

u u u

zzw
(i) (ii) (iii)

αι αιαι

m

Fig. 4. Shape and notations of sets. (i) W̃m : for an α-cut αι, wιm1 and wιm4 should be the leftmost and rightmost values of UMF(W̃m) respectively at
αι. However, we leave out the variable ι as an subscript of all variables here and follows because it is independent from the calculation of each iteration, and
to make the equations look more concise. Therefore, these variables become wm1 and wm4. Similarly, wm2 and wm3 are the leftmost and rightmost values
of LMF(W̃m) respectively. (ii) Zm : Zm is the lower bound of interval Zm, whereas Zm is the upper bound of this interval. (iii) Z̃ : for an α-cut αι, z1
and z4 are the leftmost and rightmost values of UMF(Z̃) respectively. Similarly, z2 and z3 are the leftmost and rightmost values of LMF(Z̃) respectively.

TABLE III
INFERENCE RESULTS OF EACH GROUP OF FEATURES FOR EACH PATIENT.

Z1 Z2 Z3 Z4

a1 [ 0.73,0.96 ] [ 0.38,0.58 ] [ 0.26,0.45 ] [ 0.45,0.55 ]
a2 [ 0.39,0.49 ] [ 0.65,0.93 ] [ 0.77,0.95 ] [ 0.78,0.97 ]
a3 [ 0.49,0.69 ] [ 0.39,0.63 ] [ 0.47,0.60 ] [ 0.93,1.00 ]

TABLE IV
THIS TABLE PRESENTS THE NUMERICAL VALUES OF THE PARAMETERS

THAT FORMED WEIGHTS IN FIG. 5.

u′ w′
1 w′

2 w′
3 w′

4 w′
5 w′

6 w′
7 w′

8
W1 0.70 0.70 0.80 0.85 0.95 1.00 1.00 1.00 1.00
W2 0.60 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
W3 0.70 0.00 0.00 0.00 0.00 0.00 0.10 0.15 0.25
W4 0.80 0.00 0.10 0.20 0.20 0.20 0.25 0.35 0.40

1

u

w
w w w w w w w w1 2 3 4 5 6 7 8

u'

' ' ' ' ' ' ' '

Wi

Fig. 5. A weight and its parameters modeled as IT2FS with trapezoidal
membership function.

With Eq. (18) and Eq. (21), UMF(Z̃) can be computed,
whereas Eq. (19) and Eq. (20) give the results of LMF(Z̃).
These results are presented in Fig. 6. To make the comparison
with Table II easier, interval results in Table II are presented

as a ”black bar” in Fig. 6.

B. Discussion

In Fig. 6(a), although defuzzification is needed so that
the weighted inference result (represented with IT2FS) can
be compared with its unweighted result (represented with
interval), but it is trivial that the weighted inference result
gives stronger suggestion that the patient a1 is suffering with
disease c1.

On the other hand, Fig. 6(b) shows a different scenario.
Compare to the result of weighted inference, the unweighted
result gives stronger suggestion that patient a2 is suffering with
the illness. The cases of these two patients, a1 and a2, clearly
showed that the influence of weight parameter in inferencing.

For the case of patient a3, we can observe the following:
(i) with the influence of weight, both the results have higher
coherency compare to the cases of a1 and a2; (ii) although
its unweighted result is quite similar to the unweighted result
of of a1, but their weighted results give different impression.
Comparatively, its weighted result is more similar to the
weighted result of patient a2.

Overall, considering weight parameter in BK subproduct
based inferencing gives direct impact in the inference results.
This impact can be in any direction. Although there is no
ground truth to compare with in this simulated case study,
the results with weights considered are expected to be more
reliable since more details, including the significance of each
feature is considered.

VI. CONCLUSION

Studies such as [1], [2], [33] have proved that BK sub-
product has its advantages in formulating reasoning schemes.
However, this does not means that the schemes developed
from BK subproduct have no limitations. In this paper, we
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(b) Inference result for patient a2
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(c) Inference result for patient a3

Fig. 6. Final results of weighted inference are presented in term of trapezoidal
membership functions. For comparisons, the results if grouping and weights
are not considered (Table II) are presented as black bar in corresponding
graphs.

first propose two enhancements on BK subproduct. These en-
hancements are: (i) interval type-2 fuzzy sets are used instead
of ordinary type-1 fuzzy sets. This enhancement allows BK
subproduct based inference engines to have better capability
in handling uncertainties; and (ii) weight parameter is added to
form weighted interval type-2 fuzzy based inference scheme.
This enhancement allows the inference schemes to consider
multiple groups of features at the same time, even though they
have different levels of influence in the inference.

Due to BK subproduct is based on fuzzy subsethood
measure, we also extended the implication operators based
subsethood measure [4] to work with IT2FS. The outcome,
however, does not have straight forward solution because the
terms W̃m are IT2FS while R̃m / S̃m(a, c) are intervals. We
adopted the solution of LWA [26], [27] by assuming that the
intervals R̃m / S̃m(a, c) are special cases of IT2FS. Thus, the
outcome can be solved easily by fining the FOU of R̃/S̃(a, c).

A simulated case study is provided to demonstrate the
computing procedure of this weighted BK subproduct based
inference engine. Our future work is looking forward to apply
this into human motion analysis [34]–[36] and complex scene
understanding context [37].
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