

# Ceci n'est pas une pipe: A Deep Convolutional Network for Fine-art Paintings Classification



Illustration

Input

**Neurons' Responses Visualization** 

Landscape

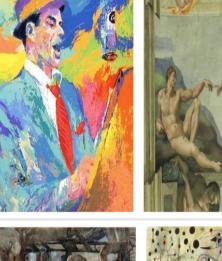


Portrait

Wei Ren Tan<sup>1</sup>, Chee Seng Chan<sup>2</sup>, Hernán E. Aguirre<sup>1</sup>, and Kiyoshi Tanaka<sup>1</sup> <sup>1</sup>Shinshu University, Japan. <sup>2</sup>University of Malaya, Malaysia.













- ► Recent years, vast digital paintings have been made available across the Internet and museum
- ► Paintings analysis through machine learning became an important task to aid curators in their daily work routine
- ► We want to learn meaningful features from paintings

## Challenges

- ► Small training data
- Many paintings are non-representative nor figurative
- ► Paintings analysis requires other background knowledge, e.g. history

## Goals

- ► Train an end-to-end Convolutional Neural Network (CNN) for large-scale *style*, *genre*, and artist classification
- ► Investigate the capability of CNN in learning features of fine-art paintings
- Visualize the learned features

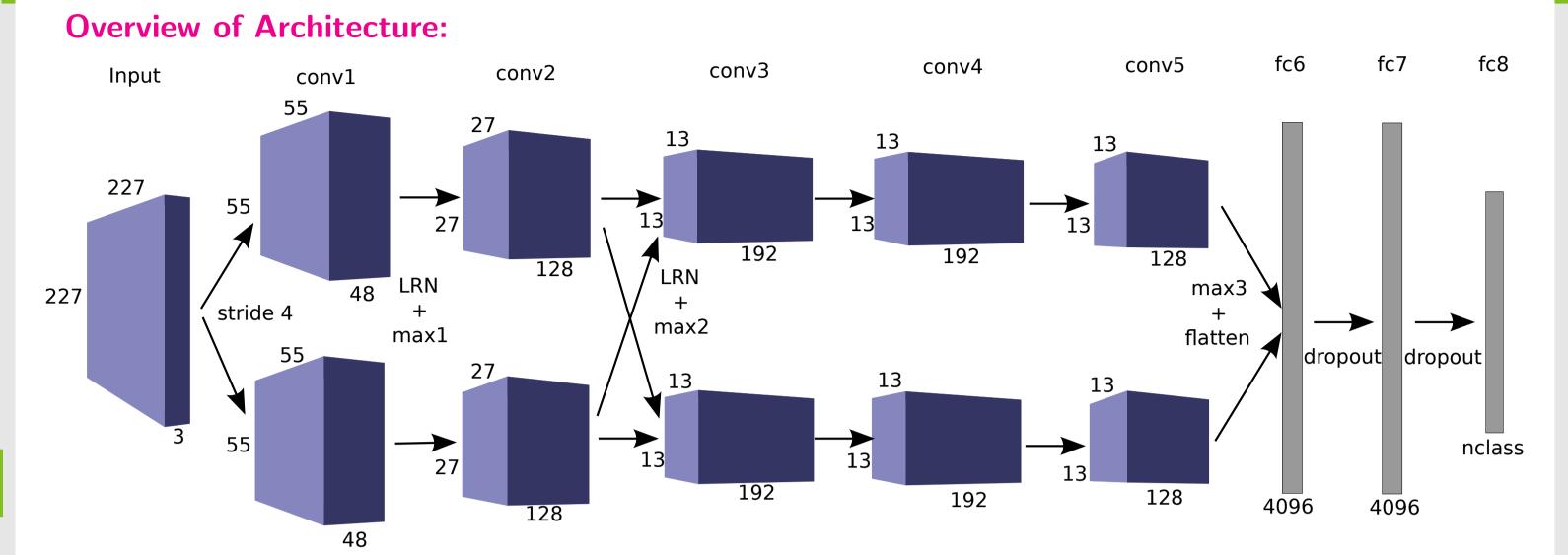
## Wikiart Paintings Dataset[2]

- ► Collection of > 80,000 fine-art paintings ranging from 15th century to modern times.
- ▶ 27 *styles* from **all** paintings.
- ightharpoonup 10 genres with > 1,500 paintings ( $\sim$  65,000 samples).
- ▶ 23 *artists* with > 500 paintings ( $\sim$  20,000 samples).

#### References

- [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (NIPS), pages 1097–1105, 2012.
- [2] B. Saleh and A. Elgammal. Large-scale classification of fine-art paintings: Learning the right metric on the right feature. arXiv preprint arXiv:1505.00855, 2015.

# **Convolutional Neural Network**



#### AlexNet[1]

# **Training details:**

Learning Scheme: SGD

$$v_{i+1} = 0.9 \cdot v_i - \epsilon \cdot \left(\left\langle \frac{\partial L}{\partial w} \right\rangle_{B_i} + 0.0005 \cdot w_i \right)$$
 $w_{i+1} = w_i + v_{i+1}$ 

- ▶ Init.  $\epsilon$ : 0.01 (non-fine-tuning) and 0.001 (fine-tuning)
- ► Mini-batch size: 128
- $\triangleright$   $\epsilon$  reduction: factor of 10 / 5,000 iterations
- ► Max. Iter.: 20,000 iterations.

**Future works** 

features from fine-art paintings, and

possibly semantically relate them

► To investigate different visuallization

how CNN extracts features from

techniques for better understanding of

► To design a generative model that is able

to reconstruct and draw the paintings

together

paintings.

► To design a better model to learn

# **Data Augmentations:**

- Centered raw RGB values
- Image translation
- $\blacktriangleright$  Image size: 227  $\times$  227
  - ► Random cropped during training
  - Centered cropped during testing
- Horizontal reflection

#### Fine-tuning

- Pre-trained on ImageNet dataset
- ► Last layer (fc8) is replaced with new SoftMax or SVM layer

# **Experimental Results**

| Model                  | Accuracy (%) |       |        |         | Size |
|------------------------|--------------|-------|--------|---------|------|
|                        | Style        | Genre | Artist | Overall | Size |
| CNN                    | 42.96        | 65.45 | 54.39  | 54.27   | 61M  |
| CNN-nofine             | 45.95        | 69.24 | 67.02  | 60.74   | 61M  |
| CNN-SVM                | 44.17        | 69.18 | 67.17  | 60.17   | 61M  |
| CNN-1000               | 43.56        | 68.38 | 64.55  | 58.83   | 61M  |
| CNN-finetune           | 54.50        | 74.14 | 76.11  | 68.25   | 61M  |
| CNN-fc6                | 51.51        | 72.11 | 74.26  | 65.96   | 44M  |
| CNN-1024               | 53.38        | 73.75 | 76.02  | 67.72   | 48M  |
| CNN-PCA-SVM [2]        | 21.99        | 49.98 | 33.62  | 35.20   | _    |
| Saleh and Elgammal [2] | 45.97        | 60.28 | 63.06  | 56.44   | _    |

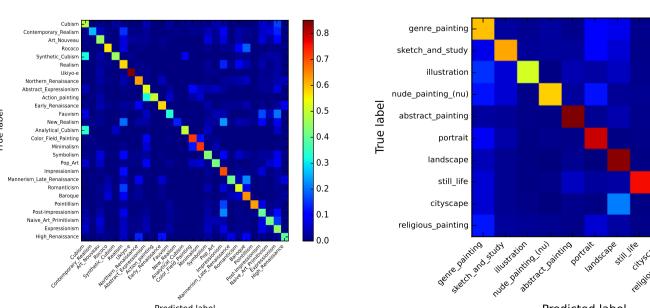
- ► Fine-tuning from ImageNet pre-trained network (CNN-finetune) yields best performance.
- SoftMax vs SVM (CNN-nofine vs CNN-SVM) have similar performance
- ► Preserving fc8 (CNN-1000) does not
- Reducing parameters (CNN-fc6 and CNN-1024) only deteriorate  $\sim 2\%$ accuracy.

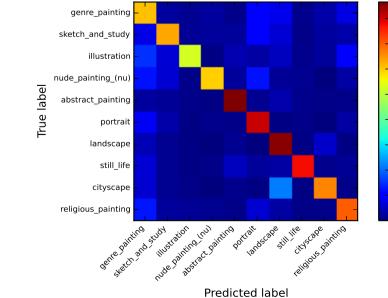
► Insight: Better pruning strategy may compress the network without affecting accuracy

Observations from the visualizations:

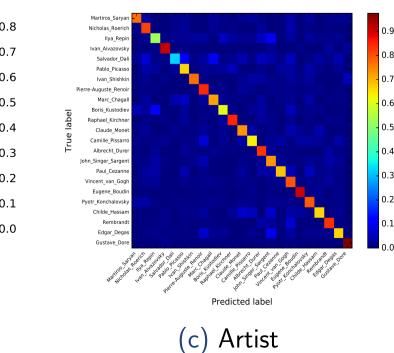
- ► Same group does not necessarily have similar features activations
- ► For more structured paintings, CNN tends to find key objects or shapes for cues

# **Confusion Matrix**





(b) Genre



(a) Style

▶ In *styles* classification, poor performance is caused by relationship between styles:

- ► Synthetic cubism vs analytical cubism (same
- Rococo vs Baroque (historically related)
- ▶ In *genres* classification, top performers are related to other classification problem:

ightharpoonup Landscape ightarrow scene recognition

- lithography ightharpoonup Portrait ightharpoonup face/human detection
  - ightharpoonup Eugene Boudin ightharpoonup marine and seashore

▶ In artists classification, artists that are

certain **techniques** or **objects**:

recognized with high precision prefer

ightharpoonup Gustave Dore ightharpoonup engraving, etching, and

- (a) Gustave Dore
- (b) Eugene Boudin