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ABSTRACT
Classification of plants based on a multi-organ approach is
very challenging. Although additional data provides more in-
formation that might help to disambiguate between species,
the variability in shape and appearance in plant organs also
raises the degree of complexity of the problem. Existing ap-
proaches focus mainly on generic features for species classi-
fication, disregarding the features representing the organs. In
fact, plants are complex entities sustained by a number of or-
gan systems. In our approach, we exploit the PlantClef2015
benchmark, and introduce a hybrid generic-organ convolu-
tional neural network (HGO-CNN), which takes into account
both organ and generic information, combining them using
a new feature fusion scheme for species classification. We
show that our proposed method outperforms the state-of-the-
art results.

Index Terms— Plant classification, deep learning

1. INTRODUCTION

Botanists classify plant species by observing plant organs: the
stem, flowers, fruits and leaves of the studied plant. Among
all organs, the leaf and their characters are studied exten-
sively [1, 2]. Computer based methods have been designed to
support botanists [3–8]. Existing literature is concerned with
plant identification using automated pattern analysis based on
leaf characters. Although the structural features of a leaf are
important in the plant identification task, for certain plants,
such as deciduous or semi-evergreen plants, leaves are not
visible or available over different periods of the years. In
these cases, multiple organs are required to identify the cor-
rect species. In 2013, the LifeClef challenge [9] provided the
first multi-organ plant dataset. This was the first multi-organ
plant classification benchmark in computer vision.

However, it is a challenging task to classify plants based
on a multi-organ approach. For example, in Fig 1, we can
observe the large variability in the appearance of plant or-
gans. Even within the same organ, large differences can oc-
cur. Furthermore, for images taken in the outdoor field, the

* Sue Han Lee and Yang Loong Chang contributed equally to this paper.

Fig. 1: Large variability in the appearance of plant organs

clutter in the background makes more difficult recognizing
plant species.

Deep learning has shown a notable success in large-
scale image recognition [10, 11]. In the multi-organ plant
identification task, many of the existing methods [12, 13]
employ deep learning to train an N -class species classifier,
irrespective of the organ or organ structure. The features
learned based on this approach tend to be generic. In [12],
the training of a generic network using a deeper learning
network, the GoogLenet showed the best result for the Plant-
clef 2015 dataset [9]. Although generic features can model
target species classes, they might not be able to provide an
appropriate description for a plant. For example, for a leaf
image taken with a noisy background with text, such as the
leaf on the newspaper shown in Fig. 1, generic features focus
on the holistic representation of the image. In such case, text
might be considered erroneously as one of the discriminative
features for the species. This is not surprising, as a generic
network learns irrelevant features, especially when they ap-
pear to be discriminative among species. Hence, a novel
approach is required that can go beyond the generic descrip-
tion of the plant and provide a better reasoning to model plant
species.

Generally, botanists can classify plants by observing and
studying their features, usually using all the plant organs.
Plant organs are known prior to explore the characteristic of
a species. For instant, when botanists study a leaf, they focus
on the leaf characters such as its margin or venation patterns,
and, when they study a flower, they focus on the characteris-



Fig. 2: The architecture of the proposed HGO-CNN.

tics of its petals, sepals and stamen to identify unknown plant
species. So, it is logical to believe that a better recognition
method for plant species might require prior information of
their organs.

In this paper, we propose a novel architecture, and call it
a hybrid generic-organ convolutional neural network, abbre-
viated HGO-CNN. HGO-CNN integrates both generic and
organ-based information for the multi-organ plant classifi-
cation task. Specifically, it is able to encapsulate organ and
generic information prior to species inference for multi-organ
plant classification. This paper has two main contributions.
First, HGO-CNN introduces a novel classification model. It
extracts prior organ information, and, classifies images of
plants based on the correlation between the chosen organ and
generic-based features. Second, HGO-CNN introduces a new
fusion scheme, to learn the correlation between an organ and
generic components. We show that both components can be
independently pretrained and integrated to form one single
architecture with the whole feature extraction and species
classification operations jointly trained end-to-end.

2. THE HGO-CNN

The proposed HGO-CNN comprises four layers or compo-
nents: (i) a shared layer, (ii) an organ layer, (iii) a generic
layer, and (iv) a species layer. The rationale behind proposing
a shared layer is inspired by: (1) the work of [14, 15], who
demonstrated that bottom layers in deep networks respond to
low-level features, such as corners and edges, in turn crucial
to the classification of any high level features, and, (2) the fact
that such layers help reducing the number of training param-
eters. Input to our HGO-CNN is a color image of 224 × 224
pixels. For the convolutional layer, we utilise 3 × 3 convo-
lution filters with spatial resolution preserved using stride 1.
Max pooling is performed using a 2 × 2 pixel window with
stride 2. Three fully connected layers, which have 4096, 4096
and 1000 channels respectively, follow behind the stacks of
convolutional layers. The final layer is the softmax layer.

2.1. Implementation Details

In order to train the HGO-CNN to capture prior organ infor-
mation for species classification, we propose a feature fusion
scheme. It is based on a novel step-by-step training strategy.
The HGO-CNN is trained using the following steps:

Pre-Training CNN layers HGO-CNN uses a two path CNN
for the purpose of training generic and organ based features
in a later stage. This two path CNN is similar to the archi-
tecture depicted in Fig. 2, except that, it does not include the
interconnection between paths, and, each path has its own
fully connected layers. These are initially pre-trained using
the ImageNet challenge dataset [16].

Organ layer After pre-trained, one of the CNN path is repur-
posed to train on the organ task. This organ layer is trained
together with the shared layer, using seven kinds of predefined
organ labels. We obtain organ-based feature maps xorg in the
H ×W × Z 3D cuboid, where H,W and Z are the width,
height and number of channels of the respective feature maps.

Generic & species layer After training the organ layer, we
train the species layer based on the species labels. Here,
we encapsulate both organ and generic information prior to
species classification. We train the species layer based on the
correspondence of these two components – organ and generic.
During the species layer training, the generic layer is fine-
tuned using a lower learning rate, and, output a generic feature
maps xgen in the H∗ ×W ∗ × Z∗ 3D cuboid. To allow both
organ and generic layers to share the common proceeding lay-
ers, we keep the shared layer’s weights to be consistent. This
is achieved by setting their learning rate to zero. To put in
correspondence between both organ and generic components,
a fusion function g : xorg,xgen → y at layer L is learned
to produced organ and a generic correlation feature maps y in
the H” ×W ” × Z” 3D cuboid. In our model, L is the last
convolutional layer for both components. Since, we fuse both
components in the same layer L, where both feature maps
have the same dimension, h = H = H∗, w = W = W ∗

and z = Z = Z∗. In the species layer, g firstly concatenates
these two sets of feature maps along the channel axis, form-
ing a stacked data xcat = [xgen,xorg] in the h×w × 2z 3D
cuboid. Then, xcat will subsequently convolves with a set of
filters f and biases b.

y = xcat ∗ f + b (1)

f is a filter bank of size N , and, each filter is in the p× q× 2z
3D cuboid. Size of b is equal to the number of filters. In our
model, we set N = z so that we can reduce the dimensionality
of the output feature maps, while, at the same time, modeling
the correspondence between the two feature maps xgen and
xorg. We set the learning rate of the new randomly-initialised
species layers to 10 times higher than the preceding initialised



layers and fix the weight of the organ layer when optimizing
the model with respect to species classes.

3. DATASETS AND EVALUATION METRICS

Dataset. The PlantClef2015 dataset has 1000 plant species
classes. Training and testing data comprises 91759 and 21446
images respectively. Each image is associated with single or-
gan type (branch, entire, flower, fruit, leaf, stem or leaf scan).

Evaluation metrics. Two evaluation metrics are employed:
the image-centered and the observation score [9]. The pur-
pose of the observation score is to evaluate the ability of a
model predicting correct species labels to all the users. Obser-
vation score calculates the mean of the average classification
rate per user as defined:

Sobs =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

Su,p (2)

where U : number of users, Pu: number of individual plants
observed by the u-th user, Su,p: score between 0 and 1 equals
to the inverse of the rank of the correct species (for the p-th
plant observed by the u-th user). Each query observation is
composed of multiple images. To compute Su,p, we adopt
the Borda count (BD) and the majority voting (MAV) based
approaches to combine the scores of multiple images:

BD =
1

n

n∑
k=1

scorek (3)

MAV = max
1≤k≤n

scorek (4)

where n: total images per query observation. score: softmax
output score which describes the ranking of the species.

Next, image-centered score evaluates the ability of a sys-
tem providing the correct species labels based on a single
plant observation. It calculates the average classification rate
on each individual plant as defined:

Simg =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

1

Nu,p

Nu,p∑
n=1

Su,p,n (5)

where U and Pu are explained above. Nu,p is the number of
pictures taken from the p-th plant observed by the u-th user,
Su,p,n is the score between 0 and 1 equals to the inverse of the
rank of the correct species (for the n-th picture taken from the
p-th plant observed by the u-th user). We compute the rank
of the correct species based on its softmax scores.

4. EXPERIMENTS

We train our model using the Caffe [17] framework. For the
parameter setting in training, we employ fixed learning policy.

Table 1: Performance comparison with other proposed meth-
ods. Note that, M-S = Multi-scale.

Method Sobs Simg

GoogLeNet + Fisher Vectors (BD) [13] 0.592 -
GoogLeNet (MAV) [13] 0.609 0.581

GoogLeNet (content+ domain) [19] 0.633 -
GoogLeNet + softmax normalization [19] 0.624 0.590

5-fold GoogLeNet (MAV) [12] 0.667 0.652
5-fold GoogLeNet (BD) [12] 0.663 0.652

VGG-16 net(MAV) 0.663 0.638
VGG-16 net(BD) 0.664 0.638
HGO-CNN(MAV) 0.671 0.647
HGO-CNN(BD) 0.673 0.647

M-S HGO-CNN(MAV) 0.715 0.690
M-S HGO-CNN(BD) 0.717 0.690

We set the learning rate to 0.01, and then decrease it by a
factor of 10 when the validation set accuracy stop improving.
The momentum is set to 0.9 and weight decay to 0.0001. All
the networks are trained by back propagation using stochastic
gradient descent [18]. We improve the generalization of the
model by randomly cropping and mirroring the input image
during training.

4.1. Performance Evaluation

We compare our HGO-CNN with the current state-of-the-
art (SOTA) methods [12, 13, 19]. We also compare with the
VGG-16 net [20], which is fine tuned and trained purely on
species labels using the PlantClef2015 dataset. This is to
measure the contribution of correlation between organ and
generic components in the plant species classification. Table
1 shows the comparison results. We observe that the HGO-
CNN model achieves a higher score compared to the VGG-16
net. This confirms the importance of organ features used to
discriminate between plant species compared to using solely
generic information for plant classification.

To increase the robustness of the system in recognising
multi-organ plant images, a multi-scale training is adopted.
We isotropically rescale the training images into three differ-
ent sizes: 256, 384 and 512. Then, for 384 and 512 image
sizes, we crop 256× 256 center pixels. During network train-
ing, 224× 224 pixels are randomly cropped from the rescaled
images and fed into the network. We call this network a multi-
scale HGO-CNN (M-S HGO-CNN). During the class predic-
tion phase, we do apply a similar multi-scale process to obtain
three sets of testing images for a query image. An averaging
fusion method is then used to combine their softmax scores
to output a final result for a query image. It is noticeable that
our M-S HGO-CNN model outperforms all the SOTA meth-
ods, achieving the best results for the PlantClef2015 dataset.

4.2. Detailed Scores of Each Plant Organ

In this section, we analyse the classification performance of
each organ based on the image-centered score, Simg . Table



Table 2: Classification performance comparison of each con-
tents based on Simg .

Method Branch Entire Flower Fruit Leaf LeafScan Stem

Choi [12] 0.498 0.531 0.784 0.602 0.600 0.766 0.326
Ge et al. [19] 0.416 0.448 0.738 0.558 0.524 0.694 0.291
Champ et al. [13] 0.398 0.453 0.723 0.559 0.501 0.713 0.302
Le et al. [21] 0.051 0.084 0.207 0.125 0.342 0.737 0.164
VGG-16 net 0.491 0.522 0.777 0.585 0.591 0.747 0.337
HGO-CNN 0.522 0.532 0.779 0.604 0.607 0.690 0.326
M-S HGO-CNN 0.568 0.603 0.798 0.653 0.652 0.803 0.411

Fig. 3: Misclassified examples. The projected F2 features of
misclassified images (right) are found having almost similar
feature patterns to the wrongly classified species classes (left).

2 illustrates the comparison results. We observe that both of
our proposed model, HGO-CNN and M-S HGO-CNN show
scanned-leaf and flower are the most effective organs com-
pared to others for plant identification. This is similar to the
results reported in [9]. Our HGO-CNN shows a higher iden-
tification score for ’Flower’ category compared to ’LeafS-
can’. In addition, using multi-scale training, M-S HGO-CNN
shows a major improvement in ’LeafScan’ category. This in-
dicates that multi-scale training data could further improve
the feature representation for multi-organ plant images. In
overall, our M-S HGO-CNN achieves the highest Simg com-
pared to other SOTAs. Although M-S HGO-CNN leads to a
better result for ’Stem’, it is still considered as the least infor-
mative one compared to other organs. This might be due to
the intra and interspecies diversity of plants in nature, result-
ing in stem not vivid enough for species inference.

4.3. Failure Analysis

We performed failure analysis and observed that these wrongly
classified test images have very similar feature patterns
with the training images from its wrongly classified species
classes. For example, in Fig. 3, the Leontodon hispidus L.
that was misclassified as Scorzoneroides pyrenaica (Gouan)
Holub has very similar visual appearances at the parts of
flower, particularly the color or shape of petals. Through fea-
ture visualisation of F2 layer, some similar feature patterns
(drawn in white bounding boxes) can be observed as well.
However, this mistake is understandable as plants in nature
have small interspecies variation, and, generally under such

(a) test image (b) Organ layer

(c) Generic layer

(d) Species layer

Fig. 4: Visualisation of the last convolution of generic, organ
and species layer for the test image. Color contrast is digitally
enhanced. Figure is best viewed in electronic form.

circumstances, more sophisticated plant morphology is used.

4.4. Qualitative Analysis

We visualise the characteristic of organ, generic and species
layer based on the deconvolution approach [14]. We subsam-
ple the top 3 activation feature maps in each layer and recon-
structed back to image pixels. Fig. 4 shows the deconvolu-
tion results. We observe that both organ and generic-based
features show complementary information, in which organ
layer is mainly focusing on the tree branch while generic layer
stimulates at the twig. Based on the correlation strategy, the
species layer encapsulates both information and reveals the
portions that best represent the plant image.

5. CONCLUSION

We have presented HGO-CNN, a new approach that uses an
end-to-end deep neural network to integrate both organ and
generic features, and, capture the correlation of these comple-
mentary information for species classification. Experiments
on the PlantClef 2015 benchmark show the robustness of
HGO-CNN in multi-organ plant classification. It is worth
noting that using multi-scale training can further boost up
the discriminative power of the model. Based on our find-
ings, it is clear that, not all sets of plant organs are useful for
species inference, and as such, we will further our research
to investigate a system that offers extra flexibility in learning
the relationship between organs, targeting only discriminative
types of organs that represent best for plant species.

6. ACKNOWLEDGEMENTS

This research is supported by the UM PPP Grant PG007-
2016A, and the used Titan X was donated by NVIDIA.



7. REFERENCES

[1] James Clarke, Sarah Barman, Paolo Remagnino, Ken
Bailey, Don Kirkup, Simon Mayo, and Paul Wilkin,
“Venation pattern analysis of leaf images,” in Advances
in Visual Computing, pp. 427–436. Springer, 2006.

[2] Beth Ellis, Douglas Daly, Leo Hickey, Kirk Johnson,
John Mitchell, Peter Wilf, and Scott Wing, Manual
of leaf architecture, vol. 190, Cornell University Press
Ithaca, 2009.

[3] Sue Han Lee, Chee Seng Chan, Paul Wilkin, and Paolo
Remagnino, “Deep-plant: Plant identification with con-
volutional neural networks,” in ICIP, 2015, pp. 452–
456.

[4] Cem Kalyoncu and Önsen Toygar, “Geometric leaf clas-
sification,” Computer Vision and Image Understanding,
vol. 133, pp. 102–109, 2015.

[5] Paolo Remagnino, Simon Mayo, Paul Wilkin, James
Cope, and Don Kirkup, Computational Botany: Meth-
ods for Automated Species Identification, Springer,
2017.

[6] David Hall, Chris McCool, Feras Dayoub, Niko Sun-
derhauf, and Ben Upcroft, “Evaluation of features for
leaf classification in challenging conditions,” in WACV.
IEEE, 2015, pp. 797–804.

[7] Y.G. Naresh and H.S. Nagendraswamy, “Classification
of medicinal plants: An approach using modified lbp
with symbolic representation,” Neurocomputing, vol.
173, pp. 1789–1797, 2016.

[8] Zhe Tang, Yuancheng Su, Meng Joo Er, Fang Qi,
Li Zhang, and Jianyong Zhou, “A local binary pattern
based texture descriptors for classification of tea leaves,”
Neurocomputing, vol. 168, pp. 1011–1023, 2015.

[9] Alexis Joly, Hervé Goëau, Hervé Glotin, Concetto
Spampinato, Pierre Bonnet, Willem-Pier Vellinga,
Robert Planqué, Andreas Rauber, Simone Palazzo,
Bob Fisher, et al., “Lifeclef 2015: multimedia life
species identification challenges,” in Experimental IR
Meets Multilinguality, Multimodality, and Interaction,
pp. 462–483. Springer, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2016, pp. 770–778.

[11] Peng Tang, Xinggang Wang, Bin Feng, and Wenyu Liu,
“Learning multi-instance deep discriminative patterns
for image classification,” IEEE Transactions on Image
Processing, vol. 26, no. 7, pp. 3385–3396, 2017.

[12] Sungbin Choi, “Plant identification with deep convolu-
tional neural network: Snumedinfo at lifeclef plant iden-
tification task 2015,” in Working notes of CLEF 2015
conference, 2015.

[13] Julien Champ, Titouan Lorieul, Maximilien Servajean,
and Alexis Joly, “A comparative study of fine-grained
classification methods in the context of the lifeclef plant
identification challenge 2015,” in Working notes of
CLEF 2015 conference, 2015.

[14] Matthew Zeiler and Rob Fergus, “Visualizing and un-
derstanding convolutional networks,” in ECCV 2014,
pp. 818–833. Springer, 2014.

[15] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vig-
nesh Jagadeesh, Dennis DeCoste, Wei Di, and Yizhou
Yu, “Hd-cnn: hierarchical deep convolutional neural
networks for large scale visual recognition,” in ICCV,
2015, pp. 2740–2748.

[16] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.,
“Imagenet large scale visual recognition challenge,” In-
ternational Journal of Computer Vision, vol. 115, no. 3,
pp. 211–252, 2015.

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional archi-
tecture for fast feature embedding,” in ACM-MM, 2014,
pp. 675–678.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in NIPS, 2012, pp. 1097–1105.

[19] ZongYuan Ge, Chris Mccool, Conrad Sanderson, and
Peter Corke, “Content specific feature learning for fine-
grained plant classification,” in Working notes of CLEF
2015 conference, 2015.

[20] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[21] Thi-Lan Le, DN Dng, Hai Vu, and Thanh-Nhan
Nguyen, “Mica at lifeclef 2015: Multi-organ plant iden-
tification,” in Working notes of CLEF 2015 conference,
2015.


