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Abstract—It is common for CCTV operators to overlook inter-
esting events taking place within the crowd due to large number
of people in the crowded scene (i.e. marathon, rally). Thus,
there is a dire need to automate the detection of salient crowd
regions acquiring immediate attention for a more effective and
proactive surveillance. This paper proposes a novel framework
to identify and localize salient regions in a crowd scene, by
transforming low-level features extracted from crowd motion
field into a global similarity structure. The global similarity
structure representation allows the discovery of the intrinsic
manifold of the motion dynamics, which could not be captured
by the low-level representation. Ranking is then performed on
the global similarity structure to identify a set of extrema.
The proposed approach is unsupervised so learning stage is
eliminated. Experimental results on public datasets demonstrates
the effectiveness of exploiting such extrema in identifying salient
regions in various crowd scenarios that exhibit crowding, local
irregular motion, and unique motion areas such as sources and
sinks.

I. INTRODUCTION

The increasing demands for security and public safety by the

society has lead to an enormous growth in the deployment of

CCTV in public spaces [1], [2]. The recent Boston Marathon

bombing, in particular, has ignited a pressing interest for

automated video content analysis to assist the law enforcement

in preventing such events to be happened again. The inves-

tigation surrounding the bombing was a missed opportunity

to use technology to detect the abnormal behavior of the

suspect, which leads to the tragedy [3]. However, one must

understand that at large events such as rallies and marathons,

where crowds of hundreds or even thousands gather, video

monitoring is a daunting task due to the large variations of

crowd densities and severe occlusions. Moreover, the attention

span of human has been shown to deteriorate after 20 minutes

and manual monitoring task requires demanding, prolonged

cognitive attention [4]. Therefore, major research efforts are

emerging towards developing solutions to identify interesting

or salient regions, which could ultimately lead to unfavorable

events, as a cue to direct the attention of the security personnel.

The definition of interesting region in crowd has been caus-

ing much debates in the literature due to the subjective nature

and complexity of the human behaviors. Some researchers

consider any deviation from the ordinary observed events as
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Fig. 1. Three-dimensional embedding of the global similarity structure
obtained using multi-dimensional scaling. The color of each point represents
the ranking score, where the extrema correspond to salient regions.

anomaly, whereas others consider rare or outstanding event

as interesting. Finding interesting regions in a given scene is

generally accomplished by firstly learning an activity model of

the scene, followed by using the learned model to identify the

anomalies [5]–[8]. In this study, we take a different perspective

to detect the interesting regions in extremely crowded scenes.

In contrast to existing studies, our method alleviates the need

for a learned model. In particular, we assume that the motion

of individuals tend to follow the regular or dominant flow of

a particular region due to the physical structure of the scene,

and the social conventions of the crowd dynamics. With this

assumption, we consider interesting regions as extrema in the

underlying crowd motion dynamics in the scene. Detecting

these extrema is accomplished in an unsupervised manner.

In contrast to existing methods [9], [10], which use low-

level features for crowd motion representation, we project the

low-level features extracted from the motion field into a global

similarity structure, which captures the pairwise similarity of

the crowd motion of all pixels (or particles that are spatially

distributed on the image plane). Such a structure allows the

discovery of intrinsic manifold of the motion dynamics as

shown in Fig. 1. With the manifold, ranking is performed

by the iterated graph Laplacian approach. The extrema of the

rank scores are employed as an indicator of salient motion

dynamics or unstable motion in the dense crowd scenes. The

aforementioned approach is purely unsupervised, eliminating

the requirement of a learning stage as to [5]–[8].

Experimental results on public datasets demonstrate the

capability of the proposed method in detecting and localizing

a broad scope of crowd salient motions caused by crowding,

sources and sinks, and local irregular motion. The crowding is
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defined as potential clogging or bottlenecks that are typically

affected by the physical structure of the environment. For

example, near junctions where the crowd density builds up and

thus, preventing smooth motion amongst individuals. Sources

and sinks refer to regions where individuals in a crowd enter or

leave the scene. Finally, local irregular motion is triggered by

flow instability of individuals or a small groups maneuvering

against the dominant flow in the scene.

II. RELATED WORK

Existing methods can be divided into two main approaches.

The first approach analyzes crowd behaviors or activities

based on the motion of individuals, where tracking of their

trajectories is required [7], [8], [11]–[15]. Commonly, the

tracking approaches keep track of each individual motion and

further apply a statistical model of the trajectories to identify

the semantics or geometric structures of the scene, such as the

walking paths, sources and sinks. Then, the learned semantics

are compared to the query trajectories to detect anomaly.

While in principle individuals should be tracked from the time

they enter a scene, till the time they exit the scene to infer

such semantics, it is inevitable that tracking tends to fail due

to occlusion, clutter background and irregular motion in the

crowded scenes. Therefore, the aforementioned methods work

well, up to a certain extent, in sparse crowd scenes. They tend

to fail in dense crowd scenes (Fig. 1), where target tracking

is extremely challenging.

In order to alleviate the need to track individuals in the

scene, researchers have proposed holistic approach for activity

analysis and behavior understanding in the crowded scenes.

Rather than computing the trajectories of individuals, this

approach builds a crowd motion model using the instantaneous

motions of the entire scene such as the flow field [16], [17].

The flow field is then fed into an hidden Markov model

to learn the inherent dynamics of the motion patterns [16],

or clustering methods for motion segmentation [17]. Ali et

al. [9] apply the Lagrangian particle dynamics based on the

crowd flow field to estimate the stability of a particular region.

Their method able to detect regions with unstable motion

by discovering the abnormality in the segmented flow fields.

Similarly, [18] proposed another representation of the low-

level features extracted from the optical flow using a multi-

scale approach to identify interesting regions. Since these

methods use only the direction and speed as the motion

features, their scenarios are limited to those events that are

occurred due to the variation in motion direction and speed

only. Example of these detections include an individual moves

at a faster speed than the group, or moving at the opposite

direction. Their method are not able to cope with other type

of saliency such as crowding, or unique motion areas such as

the sources and sinks.

Detection and localization of salient regions by using spec-

tral analysis is proposed in [10]. In contrast to other methods,

their method suppress dominant flows with a focus on the

motion flows that deviate from the norm. While their method

deal with unstable crowd flow, their experiments were limited

(a) Input video sequence (b) Motion flow estimation

(c) (Left) stability map and (Right) phase shift map reveals the global
similarity structure of the scence. The width and height of the map are
the number of pixels of a video frame.

(d) The ranking results, where red and blue color indicate the extrema
with interesting dynamics.

Fig. 2. Outputs from the key steps in crowd saliency detection. Best viewed
in color.

to the detection of simulated instability, and not real-world

public scenes. In the closest work to ours, Solmaz et al. [19]

propose a linear approximation of the dynamical system to

categorize different crowd behaviors using the eigenvalues

over an interval of time. Their methods show promising results

in detecting and classifying five different scenarios of saliency,

which includes the bottleneck, lane, arch, fountainhead and

blocking. In comparison to [19], our method is more sensitive

in detecting such salient regions, while having the capability

of highlighting the location of the triggering event accurately.

In summary, the main contribution of this study is that we

propose the transformation of low-level motion features into

global similarity structure. The structure allows the discovery

of the intrinsic manifold of the motion dynamics in crowded

scenes, which could not be captured by the low-level rep-

resentation as to [9], [10]. Moreover, contrary to the state-

of-the art solutions [5]–[8], the presented manifold requires

(1) no tracking, as we exploit optical flow representation,

and (2) no prior information or model learning to identify

interesting/salient regions in the crowded scenes, as we employ

extrema in the intrinsic manifold of motion dynamics as an

indicator of saliency.

III. PROPOSED FRAMEWORK

The pipeline of the proposed framework is illustrated in

Fig. 2.

A. Crowd Motion Field

The proposed framework represents the crowd motion field

of each frame using the optical flow. Specifically, given a
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crowd video sequence, the velocity field at each point, V (p) =
(up, vp) is estimated using the dense optical flow algorithm as

to [20], where each pixel in a given frame is considered as a

point or particle1, p = (x, y). Both the horizontal and vertical

flow components, u and v, of the extracted optical flow field

are then accumulated, and an averaged flow, V , is calculated

within an interval of time, comprising |τ | frames.

V = {u, v} = {1
τ

t+τ∑
t

up,
1

τ

t+τ∑
t

vp} (1)

The proposed interval-based average representation is per-

formed to obtain smooth and consistent fields, where incon-

sistent velocity components (noise) are often reduced if not

removed during the averaging step.

B. Feature Representation

Using the crowd motion field, we extract two features to rep-

resent a broader definition of the crowd dynamics denoted as

the stability and phase shift maps. These maps are the results

of transformation of the low-level feature space into global

similarity structure space. Next we describe the computation

of each map in detail.
1) Stability Map: The mean optical flow field appears to

be a good indicator for the dominant flow of individuals in

crowd, but may not be sensitive enough to capture subtle

interaction and motion flows that deviate from the norm. To

this end, we apply particle advection to the mean flow field.

The resulting pathlines from the advection process allows

quantification of the motion dynamics, which is derived later

from the separation coefficients between particles. The basic

idea of particle advection is to approximate the ‘transport’

quantity by a set of particles as proposed in [21]. In this

context, advection is applied to keep track of the velocity

changes for each point, p along its velocity field defined by

(u, v).

d�xp

dt
= up(t0, t, x0, xp) (2)

d�yp
dt

= vp(t0, t, y0, yp) (3)

where (x0, y0) represents the initial position of point p at time

t0, while (xp, yp) denotes its position at time t0 + t. Unlike

the conventional optical flow representation that captures the

velocity of a pixel in two consecutive frames, the advected

flow field captures the velocity of a particle in τ consecutive

frames. The trace of particles over time forms a pathline.

We make assumption on the initial position of p as the

mean velocity fields, and perform cubic interpolation of the

neighboring flow field to compute the robust velocity of

particles.

We adopted the Jacobian method as in [22] to measure the

separation between each pathline which are seeded spatially

close to a point, p, within a time instance, τ . The Jacobian is

computed by the partial derivatives of d�xp and d�yp, where:

1One could also consider a spatial block of pixels as a particle.

∇F t(p) =

[
∂d�xp

∂xp

∂d �xp

∂yp
∂d�yp

∂xp

∂d �yp

∂yp

]
(4)

According to the theory of linear stability analysis in [23],

the square root of the largest eigenvalue, λt(p) of F t(p)
T
F t(p)

indicates the maximum offset or displacement if the particle’s

seeding location is shifted by one unit as it satisfies the

condition that lnλt(p) > 0. In the context of this study, a

large eigenvalue indicates that the query point is unstable, and

vice versa for a small eigenvalue. Since we are only interested

in regions that have interesting motion dynamics, based on the

eigenvalue, we can compute the stability of a point using Eq.

5. In practice, τ should depend on the rate of change of the

flow field, with a higher rate of change of flow field resulting

in smaller time scales and vice versa. In our experiments, we

fixed τ = 50 frames at 25fps.

φt =
1

| τ | log
√

λt(p) (5)

This is followed by transforming the low-level feature

comprising the stability coefficient, which in this study acts as

an indicator of unstable motion, into global similarity structure

space. The stability map is computed by taking the difference

between the stability of each point, i, with every other point,

j, in the given scene:

sti,j = φt
i − φt

j (6)

where si,j is the (i, j) element in the stability map denoted

by S ∈ R
h×w, and h and w represent the height and weight

of the given frame.

2) Phase Shift Map: In order to uncover the collective flow

of the crowd, one of the simplest way is ‘grouping’ points in

the velocity field, V , according to the phase similarity. Here,

we anticipated that connecting ‘grouped’ points with respect

to the gradual changes of the velocity phase, we can uncover

important motion characteristic of the crowd.

The phase shift map is denoted by Θ ∈ R
h×w. Each element

θti,j ∈ Θ is obtained as the phase difference of the mean flow

vector between points:

θti,j = arccos
V

t

i · V
t

j∥∥∥V t

i

∥∥∥ ∥∥∥V t

j

∥∥∥ (7)

where the phase difference, θti,j , between two points are

measured by the shortest great-circle distance, hence θti,j is

bounded by [0, π]. The rational of projecting the velocity

phase to the global similarity structure is to reveal the intrinsic

relationship of each point, p, with the other points on the same

video sequence.

C. Saliency Detection by Manifold Ranking

In the following, we will explain the steps to detect the

salient motion regions within the crowd scene by performing

ranking on the intrinsic manifold [24] uncovered by the global

similarity feature maps, i.e. the stability and phase shift maps.
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For each video sequence, we represent the set of data points

R = {r1, r2, . . . , rn}, in the form of a weighted k-nearest

neighbors (kNN) undirected network graph G = 〈V,E〉. Note

that each data point, r = (st, θt)
T

, is an integrated feature

comprising the global similarity structure representation of

scaled stability and phase change, where st and θt are scaled

to [0, 1]. Each vertex, υi, in the graph represents a data point,

ri. Two vertices are connected by an edge E weighted by a

pairwise affinity matrix, Wij , which is defined as:

Wij = exp

(−dist2(ri, rj)
σiσj

)
(8)

where i �= j and Wii = 0 to avoid self reinforcement during

the manifold ranking [24]. σi and σj are the local scaling

parameters [25]. The selection of σi is given as:

σi = dist(ri, rk) (9)

where rk is the k-th neighbor of data point ri. The distance

metric, dist, denotes the Euclidean distance. Given the affinity

matrix, Wij , we can then represent the connected graph, G,

using the normalized Laplacian matrix, L = D−
1
2WD−

1
2 ,

where D is the diagonal matrix with Dii =
∑

j Wij .

We assume the typical and uninteresting motions dominate

a scene. Thus, selecting a random set of m ‘query’ points,

Q = {q1,q2, . . . ,qm} can well capture the dominant crowd

behavior of the scene2. By performing ranking, we can detect

extrema as data points with the highest and lowest rank

scores, deviating from the query points. Such extrema suggest

interesting regions caused by crowding, local irregular motion

and sources and sinks.

To detect the extrema, we label each query successively

with a positive label +1. Its label is then propagated to all

other unlabeled instances, {ri}, of which their initial labels are

assigned as 0. More precisely, we compute a rank score vector

for each query qi, individually, denoted as ci = (c1i , ..., c
n
i )

T
,

via the Laplacian graph, L, using the close form equation:

ci = (I − αL)−1y (10)

where I is an identity matrix and α is a scaling parameter in

the range of [0, 1]. The vector y is the initial label assignment

of data points, which is given as y = (y1, ..., yn)
T

, in which

yi = +1 if ri = qi, and yi = 0 otherwise. Note that qj

where j �= i has initial label assigned as 0 too. We repeat

the same ranking process for all query points Q. The final

rank score vector, C, is the average of m rank score vectors,

i.e. C = 1
m

∑m
i=1 ci. Extrema are data points with the highest

and the lowest rank scores in C.

IV. EXPERIMENTS

We used the benchmark datasets obtained from [8]–[10],

[19] to evaluate the proposed framework. The sequences are

diverse, representing dense crowd in the public spaces in

2The selection of those random points can be repeated to generate more
queries, accordingly. In this study, we set m = 100. Evaluation with varying
query points generated consistent rank score.

(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 3. Comparisons on the corrupted pilgrimage sequence, where synthetic
noise was added to simulate unstable motion. Best viewed in color.

various scenarios such as pilgrimage, station, marathon, rallies

and stadium. In addition, the sequences have different field of

views, resolutions, and exhibit a multitude of motion behaviors

that cover both the obvious and subtle instabilities.

A. Qualitative Analysis

1) Instability Detection: A set of two sequences comprising

a pilgrimage and marathon scenes were used to test the capa-

bility of the proposed system in detecting instability. Following

the studies [9], [10], we introduced synthetic noise into the

2 sequences to simulate the unstable region as enclosed in

the blue bounding box shown in Fig. 3 and the red box

in Fig. 4, respectively. We observe that all three methods (

[9], [10] and ours) are able to identify the unstable region,

as shown in Fig. 3-4. However, in addition to the synthetic

noise, our proposed method is able to identify other regions

that exhibit unique motion dynamics as highlighted by the

colored regions. After scrutinizing our results, we notice that

these areas correspond to the exit and turning point around

the Kaaba in Fig. 3, where there is potential slowdown in the

pace of individuals, thus resulting in salient motion dynamics

within these regions. Similarly, the proposed method is able

to detect the sink region in the marathon sequence in Fig.

4, where the crowd exit from the field of view. The results

demonstrate the effectiveness of the global similarity structure

in capturing the intrinsic structure of the crowd motion.

To further evaluate the robustness of the proposed method

in dealing with inconsistent and subtle crowd motion, we

tested the three methods again on the original sequences of

pilgrimage and marathon, without any synthetic noise. The

results in Fig. 5 show that [9], [10] do not have any detection

for these sequences. In contrast, our method is capable of

detecting the sink region, as well as the potential overcrowding

regions along the bridge’s edge. Note that the results herein are

consistent with the sequences with synthetic noise since our

method detect similar interesting regions. The results, again,

show that subtle motion can be more effectively discovered by
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(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 4. Comparisons on the corrupted marathon sequence, where synthetic
noise was added to simulate unstable motion. Best viewed in color.

(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 5. Comparisons on the original pilgrimage sequence (without synthetic
noise). Best viewed in color.

employing the global similarity structure of the crowd motion

rather than using the low-level flow field [9], [10]

2) Local Irregular Motion Detection: Another comparison

is performed between our work and Solmaz et al. [19] using

the sequence obtained from an underground station as depicted

in Fig. 7. This sequence contains obvious source and sink

regions, which are detected as bottleneck and fountainhead

in [19]. The results demonstrate that our method is able to

detect similar regions as in [19], with the addition of another

source region at the bottom right of the scene, which is not

detected by [19]. In addition, our method detected the irregular

motion of someone walking into the scene from the bottom

left corner of the scene. This is not the case in [19], where

their detection does not highlight accurately the location of the

triggering event. Note that while our method is able to detect

salient/interesting motion dynamics, we do not characterize

them into the different categories.

We further tested our method on sequences with local

irregular motion caused by individuals moving against the

dominant crowd flow such as that shown in Fig. 8. This

(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 6. Comparisons on the original marathon sequence (without synthetic
noise). Best viewed in color.

(a) Original image (b) Solmaz et al. [19]

(c) Our method

Fig. 7. Comparison with the state-of-the-art method [19] on the station
sequence. Best viewed in color.

scenario is to mimic the Boston Marathon Person Finder page

launched by Google, which aims to identify individuals that

seem suspicious. Through the proposed global similarity struc-

ture of the crowd motion, our method detects such anomaly

consistently and effectively, as illustrated in Fig. 8.

B. Quantitative Analysis

We compared our detections against manually labeled in-

teresting regions from all the sequences obtained from the

public datasets. Most of the related studies [9], [10], merely

provide qualitative results and the implementations are not

shared publicly; leading to difficulties in performing a compre-

hensive evaluation quantitatively. We determined the regions

with interesting motion dynamics as per video basis and we

employed the F-measure according to the score measurement

of the well-known PASCAL challenge [26]. That is, if the

detected region overlaps the ground truth region by more than

50%, then the detection is considered as the correct salient

region.

For clarity, we present our detection results according to
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Fig. 8. Example detections on local irregular motion. Our output is
highlighted in the blue bounding box on the right column. First row: Our
method detect an individual walking across the scene, while the rest of the
crowd is seated. Second row: Our method detect an individual maneuvering
through an extremely crowded scene. Best viewed in color.

TABLE I
SUMMARY OF THE CROWD SALIENCY DETECTION RESULTS.

Motion Category Total # # of # of Missed # of False
of Labelled Region Detection Detection Detection

Crowding 13 12 1 0
Sources & Sinks 19 14 5 0
Local Irregularity 43 47 2 6

different interesting motion categories, i.e. crowding, sources

and sinks and local irregular motion, as shown in Table I. In

general, the proposed method performs exceptionally well with

only several false detections that are due to ambiguous local

motion, e.g. random hand waving motion in a crowded scene.

Our method fail in scenarios where the stability and phase

features are derived from inaccurate flow field due to strong

illumination. Specifically, the proposed ranking algorithm pro-

duce erroneous connected graphs, leading to mis-detections.

V. CONCLUSION

We have demonstrated that the transformation of the low-

level flow field descriptors, stability and phase changes, into

the global similarity structure, is an effective indicator for

salient motion dynamics and irregularities in the crowded

scenes. In particular, experimental results have shown that the

method is effective in detecting sources and sinks, crowding,

and local irregular motions from various surveillance scenar-

ios. Importantly, accurate detection is achieved in the crowded

scenes without tracking, prior information or model learning.

Though the manifold projection is capable of discovering

intrinsic structure of the motion dynamics, the basis of our

manifold is optical flow. Thus, it is limited by the known

drawbacks of optical flow estimation. Future investigation

includes identifying low-level features that are more robust

towards characterising motion in extremely crowded scenes.
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