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ABSTRACT

Recent advances in generative adversarial networks (GANs) have been proven effective in performing do-
main adaptation for object detectors through data augmentation. While GANs are exceptionally success-
ful, those methods that can preserve objects well in the image-to-image translation task usually require
an auxiliary task, such as semantic segmentation to prevent the image content from being too distorted.
However, pixel-level annotations are difficult to obtain in practice. Alternatively, instance-aware image-
translation model treats object instances and background separately. Yet, it requires object detectors at
test time, assuming that off-the-shelf detectors work well in both domains. In this work, we present
AugGAN-Det, which introduces Cycle-object Consistency (CoCo) loss to generate instance-aware trans-
lated images across complex domains. The object detector of the target domain is directly leveraged in
generator training and guides the preserved objects in the translated images to carry target-domain ap-
pearances. Compared to previous models, which e.g., require pixel-level semantic segmentation to force
the latent distribution to be object-preserving, this work only needs bounding box annotations which are
significantly easier to acquire. Next, as to the instance-aware GAN models, our model, AugGAN-Det, inter-
nalizes global and object style-transfer without explicitly aligning the instance features. Most importantly,
a detector is not required at test time. Experimental results demonstrate that our model outperforms re-
cent object-preserving and instance-level models and achieves state-of-the-art detection accuracy and

visual perceptual quality.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Recent progress in the domain of object detection has led to
a remarkable performance improvement, particularly for one-stage
object detectors, which provide a good balance between detection
speed and accuracy. This is achieved with sophisticated training
strategies such as data augmentation [1] to increase the variabil-
ity of the input images, so that the object detector has better ro-
bustness on e.g., those images obtained in different environments.
However, as shown by Braun et al. [2], Yu et al. [3], the overall de-
tection performance still drops significantly when the trained de-
tector model is deployed in a new domain different from the (aug-
mented) training set. A natural solution to this limitation is to per-
form image-to-image translation for the labeled data in a source
domain (e.g., daytime images) to a target domain (e.g., nighttime
images).
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A popular solution is CycleGAN [4] that performed unpaired
image-to-image translation with the introduction of cycle consis-
tency in Generative Adversarial Networks (GANs) [5]. It encourages
bi-directional image translation with regularized structural output.
Since then, various works [6-9] have been proposed and achieved
impressive results in image translation tasks, such as horse < ze-
bra, vangogh < photo, and cat < dog.

However, these existing methods are prone to fail at preserving
the objects, as illustrated in Fig. 1. That is, existing solutions [10-
13] with explicit object preservation may retain the objects, but
their appearance might not be able to adapt sufficiently to the
target domain. Recently, instance-aware image translation mod-
els [14,15] aim to improve this issue by aligning instance features
using either detection labels or an off-the-shelf object detector for
the generators. For instance, INIT [14] employed both the instance
and global styles to guide the generation of the target domain ob-
jects. Unfortunately, their model neglects the instance-level infor-
mation at the test time and only utilizes the global information.
DUNIT [15] applied an off-the-shelf general object detector and an
instance-level encoder to extract instance-boosted features during
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(a) Original
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Fig. 1. Day-to-night image translation results of a sample image from GTA dataset [16]: (a) Original daytime image; Results of models (b) without and (c) with object
preservation; and (d) our proposed with instance-aware image translation learning from the target-domain detector.
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Fig. 2. How a target-domain detector can help train a GAN to perform instance-aware image-translation.

learning, and aligned the instance features between the original
and the (day-to-night) transformed images. Yet, in the test time,
the object detector is still required to improve the performance.
In this paper, for the first time, we introduce an instance-aware
GAN framework named as AugGAN-Det to jointly train a generator
with an object detector (for image-object style) and a discrimina-
tor (for global style) as shown in Fig. 2. With this, a novel Cycle-
object Consistency (CoCo) loss is proposed to preserve the instance
level characteristic during image-to-image translation. That is, the
object detector (i.e., bounding box) of the target domain will be
directly involved in training the generator and resulting in guid-
ing the image-objects in the translated images to carry realistic
target-domain appearances across complex domains. Most impor-

tantly, the object detector is not required at the test time in con-
trast to Bhattacharjee et al. [15].

Our contributions are as follows: (i) We design an image-
to-image translation network which jointly trains a generator
with an object detector (for object-style) and a discriminator
(for global-style) by leveraging a novel cycle consistency loss
dubbed CoCo. Most importantly, an object detector is not re-
quired at test time; (ii) We quantitatively demonstrate that solely
using the object labels (i.e., bounding box) for learning object-
preserving image translation can achieve better results than lever-
aging pixel-level semantic segmentation into GAN training [10-
12] (see Table 3); and (iii) Extensive experiments are conducted.
Our method achieves better quantitative and qualitative results
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Table 1

Network architecture of encoders, generators, discriminators and detectors in
instance-aware image-to-image translation model: N, K, S denote the number of
convolution filters, kernel size, and stride; n is the number of neurons of the fully-
connected layers and the last layer of detector assumes C = 1. Please refer to Fig. 3
for knowing where E, G, D, B, and H are used in the overall network structure.

Layer Encoders (E) Layer info

1 CONV, ReLU N64,K7,51

2 CONV, ReLU N128,K3,51
3 CONV, ReLU N256,K3,52
4 CONV, ReLU N512,K3,S2
5 RESBLK, ReLU N512,K3,51
6 RESBLK, ReLU N512,K3,51
Layer Generators (G) Layer info

1 RESBLK, ReLU N512,K3,51
2 RESBLK, ReLU N512,K3,51
3 DCONV, ReLU N128,K3,52
4 DCONV, ReLU N64,K3,52

5 CONV, Tanh N3,K7,51
Layer Discriminator (D) Layer info

1 CONV, LeakyReLU N64, K4, S2
2 CONV, LeakyReLU N128, K4, S2
3 CONV, LeakyReLU N256, K4, S2
4 CONV, LeakyReLU N512, K4, S2
5 CONV, LeakyReLU N512, K4, S1
6 CONV, Sigmoid N1, K4, S1
Layer Detectors (B + H) Layer info

1 CONV, ReLU N64,K7,S2

2 Maxpool K3,52

3 CONV, ReLU N64,K3,52

4 CONV, ReLU N128,K3,52
5 CONV, ReLU N256,K3,52
6 CONV, ReLU N512,K3,52
7 Avgpool K12x6

8 Fully-connected, ReLU n4096

9 Fully-connected n792

mainly on three popular benchmarks namely INIT, GTA and
BDD100k.

2. Related work
2.1. Object detection

In the past few years, object detectors have achieved remark-
able performance with the advent of CNNs. A modern detector is
usually composed of two parts, a pre-trained CNN backbone and
a detection head to predict the classes and bounding boxes of
objects. In general, object detectors can be categorized into two
camps, i.e., one-stage object detectors [1,17-20] and two-stage ob-
ject detectors [21-26]. One-stage object detectors recently received
more attention, since real-time applicability is of great and practi-
cal interest in many applications.

2.2. Data augmentation

Data augmentation is an essential technique to increase the ro-
bustness and to achieve higher detection accuracy of an object de-
tection model. For example, Random Erasing [27] and CutOut [28],
tried to simulate object occlusion in the hope that the detector
learns to visually understand the essence of objects’ appearances
even though only part of an object can be seen. Works such as
DropOut [29], DropConnect [30] and DropBlock [31] apply a similar
concept to feature maps. More recently, MixUp [32], CutMix [33],
GridMix [34] and Mosaic [1] were proposed to combine multi-
ple images for additional data augmentation. However, the above-
introduced methods are often not specifically designed to enhance
a model’s robustness across domains. As pointed out in Braun et al.
[2], the (pedestrian) detector is recommended to be trained using
the data of the domain for the detector to be deployed to achieve
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the highest accuracy. Thus, standard data augmentation strategies
are not sufficient across domains.

2.3. Generative adversarial networks

Due to the recent success of GANs [5], many approaches
adopted GANs for the image translation task. For example,
Pix2Pix [35] provides visually plausible images in the target do-
main given paired training data. By introducing the cycle consis-
tency constraint to encourage bidirectional image translation with
regularized structural output, CycleGAN [36] achieved astonishing
image translation results when only unpaired data is available.
UNIT [6] further applied weight-sharing constraints to increase
the translation consistency. Usually, GAN models abandon the dis-
criminator once the training process is completed. However, NICE-
GAN [37] demonstrated that the encoder trained by the adver-
sary loss in the discriminator is still informative. Therefore, reusing
discriminators for encoding in generating images is quantitatively
beneficial.

To enforce the structure-consistency between the source and
the generated images, CyCADA [10] tried to incorporate a down-
stream segmentation model in the forward cycle and a seman-
tic consistency loss in the backward cycle. AugGAN [11] proposed
to utilize auxiliary segmentation tasks in a multi-tasking fashion
in both cycles to prevent content distortion. The major difference
between CyCADA and AugGAN is that the former only involves
a downstream segmentation task in the forward cycle. AugGAN
designed multi-tasking generators that learn to perform image-
translation and segmentation simultaneously in both cycles. Bicy-
cleGAN [38] is a multimodal image-to-image translation model,
but requires paired data that cannot be easily acquired in real-
driving scenarios. Both DRIT [39] and MUNIT [8] are multimodal
GANs able to work with unpaired images. However, the overall im-
age style and particular objects appearances cannot be transformed
individually. Multimodal AugGAN [12], a multimodal structure-
consistent image-to-image translation network, integrates semantic
segmentation models for both domains with a multimodal image-
translation network. Compared to AugGAN, Multimodal AugGAN
can provide diverse and visually compelling results in the target
domain with better object preservation due to the multimodal
behavior. However, the necessity of pixel annotations limits the
method’s applicability. Both INIT [14]| and DUNIT [15] are instance-
aware GAN models. The former method employs the instance and
the global style to guide the generation of target-domain objects.
However, the model discards the instance-level information at test
time, and only the global module is used. The latter work ap-
plies an off-the-shelf object detector (trained by MSCOCO [40]) and
an instance-level encoder to extract instance-boosted features dur-
ing learning, and align the instance features between the original
and transformed images. As shown in Braun et al. [2], for pedes-
trian detection, the highest detection accuracy is obtained when
the training and test data are from the same domain (i.e., time-of-
day). However, MSCOCO only contains less than 1% low-light im-
ages, and DUNIT still requires an object detector at test time to
leverage the object instance features.

3. Proposed model

In the image translation problem, the goal is to learn a net-
work between two visual domains X c RF*Wx3 and Y ¢ RHXWx3,
Previous methods sometimes expect that an n-class segmenta-
tion ground-truth, ie, X c RF*W and ¥ c RV is available so
that image-structure of a transformed image is consistent with its
counterpart in the original domain. However, obtaining pixel-wise
annotation is very expensive. Therefore, in this work, we only as-
sume that bounding boxes with associated object labels from two
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Fig. 3. Overall structure of the proposed cycle-object-consistent image-to-image translation network: x: sampled image from domain X; x': bounding box Ground-Truth of
X; Yrans: translated result; xq: self-reconstructed image given x; Xcyc: cycle-reconstructed image corresponding to x.

visual domains, X’ c RMxNC+5K) and Y’ ¢ RMxN(E+50) je. k objects
with C classes inside M x N grid cells are available. Our objective
is to learn the mapping Gx_.y and Gy_,x conditioned on X" and Y’,
given X and Y.

The detailed architecture of our network is given in Table 1. Our
detector comprises a backbone, pretrained ResNet-18, and a detec-
tion head. It is worth mentioning that the grid cell size is 12 x 6
and each grid cell could predict two objects (described by u, v, w,
h and an objectness score) of the same class. In this work, when C
classes of objects are considered, the neurons of the last layer be-
come 12 x 6 x (5 x 2+ C) for a 384 x 192 image. For the discrimi-
nators, we follow the design of PatchGAN [35] because it is flexible
to work on arbitrarily-sized images in a fully convolutional fashion.

3.1. Detection loss

3.1.1. Cycle-object consistency (CoCo) loss

Our model utilizes a target-domain detector instead of an off-
the-shelf object detector [15] to guide the generator. Generally, we
expect that given the encoded latent vector generated by Ey, the
generator Gx_.y learns to generate images in an attempt to fool the
discriminator Dy while the object consistency is kept. As pointed
out by Chu et al. [36], a strong cycle-consistency will enforce the
reconstructed information to be hidden in the translated image,
Virans- Therefore, in our cycle-reconstruction phase, another dis-
criminator is added to constrain the cycle-adversarial consistency
between x and xrec Which is produced by E,, the generator Gy_x.
Most importantly, we propose Cycle-object Consistency (CoCo) loss
as shown in Fig. 3. It keeps the objects in both yians and xcyc de-
tectable at the same time in the forward cycle and in both Xrans
and ycyc in the backward cycle. i.e., to encourage detection result
Hy (Bx(Xcyc)), Hy(By(Ycyc)) predicted by the detection backbones, By
and By, and the prediction heads, Hy and Hy, to be similar to the
detection Ground-Truth, x, ¥/, respectively. That is, it enforces ob-
ject(s) reservation in the translated images.

Technically, we incorporate a one-stage object detector into the
training of our generators. In the forward cycle, the loss of an ob-
ject whose bounding box center is located inside grid cell (i, j) is
defined by

»Cobj (Ex, Gx»y, Ey, Gyex, Bx9 ny X, X/) =

Fapy [z< S ap(GP, (Xeye) — G (x))?

n=1 pe{u,v}

£ Y @6, 00 — /G, ()2

qe{w,h}
(Gl (Xeye) — ,]n<x>))+2(cl,,,(xcyc>— Gy (1

where Xcye = Gy—x(Ey(Gxy(Ex(x)))). ij_n(xcyc) is the class score
of grid cell (i, ). Gfj,(Xeye), Gl (Xeye), Gl (Xeye), G (Xeye), and
i n(xcyc) are the objectness score, the coordinate, the width, and
the height of the nth predicted output, given the input image
X. The corresponding ground-truth values are G (x) ijn(x/)
G}‘jn(x ), G}/Jn(x) G;’}’n(x) and Gh (XD, respectlvely In this work,
we set oy = ay = o = o = 5.
As to a non-object grid, i.e.,, no object whose center of object
window locates inside grid cell (i, j), its loss function is given by

L—obj (Ex, Gx—y, Ey, Gy_.x, Bx, Hy, X, X') =

k
]Ex,xwvax, Za—'obj (G?j,n(xcyc) U n(X )) (2)
n=1
where A_gpj = 0.5. As to the backward cy-
cle, the object-grid and non-object grid loss s
stated as Lopi(Ey, Gy—x, Ex, Gx—y, By, Hy, Y, Y") and

[r—.obj (Eys Gy—»x, Ex, Gx—>y, By, Hy.Y, Y’).

3.1.2. Image-translation object-consistency loss

Aside from CoCo loss, we found that the interaction between
the object detector and generator is very similar to the one be-
tween the discriminator and generator, i.e., both the object de-
tector and the discriminator can overpower the generator. In-
spired by label smoothing [41] that proposed to prevent the dis-
criminator from being overconfident, we also try to attain a bal-
ance between the generator and the object detector by controlling
the detector’s training convergence. For this purpose, we experi-
mented with GTA dataset. As seen in Table 6, an unconverged and
frozen object detector can only guide the generator to yield ob-
jects with very-limited target-domain-style appearances, thus lead-
ing to a very low AP (Average Precision) [42]. Meanwhile, a con-
verged and frozen detector tends to provide a non-informative
back-propagation signal to the generator and has a better AP than
an unconverged and frozen object detector. Finally, when the ob-
ject detector is jointly trained with the generator, it achieves the
highest AP as the generator continuously learns to generate realis-
tic and target-domain-detector-detectable objects.
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Technically, given the translated images Yytmans, the
image-translation object-consistency losses are modeled via
Lobj (Ex, Gx—y. By Hy. X.X") and L_gp; (Ex, Gx—y. By, Hy. X. X'). Anal-
ogously, the additional losses utilized in the backward cycle
are  Lopi(Ey, Gyx, Bx, Hx,Y,Y’) and  L_op;(Ey, Gy—x, Bx, Hx, Y. Y’),
respectively.

3.2. Other losses

3.2.1. Adversarial loss

There are two kinds of adversarial losses in our model. The first
one is designed for leading x and y to be properly translated to
y and x, respectively, in terms of style. In this work, we apply
least-squares adversarial loss [43] because it yields better image-
translation results in our experiments. The first adversarial loss
function is given as

Lean(Ex. Gxoy. Dy, X.Y) = Eyop, [ (Dy(1))?]
+ Exop, [ (1 = Dy (Geoy (Ex(2))))?]. (3)

where Ey and Gy, try to generate transformed images
Gx—y(Ex(x)) that look similar to images from domain Y, while Dy
aims to distinguish between translated samples Gx_.y(Ex(x)) and
real samples y in terms of style. In the image-translation phase of
the backward cycle, the adversarial loss is Lgan(Ey, Gy—x, Dx, X, Y).

In order to encourage Xrec and yrec to be close to the original
x and y, the second adversarial loss uses two additional discrimi-
nators, Dy x,. and Dyy,.., respectively. The cycle-adversarial loss in
the forward cycle is modeled as follows,

EGAN (EXv GX‘)_}U Ey; Gya)w Dx.xl-ec s X) = IFa‘)«vpx [(Dx,xrEC (x))z] +
Expy [ (1 = Drtue (Gyoox (By (Gay (Ex(x))))))?]. 4)

The backward cycle is modeled via
EGAN (Ey7 Gyax, Ex, Gx»y; Dy,yrecg Y)~

an analogous loss,

3.2.2. Self-reconstruction loss

CycleGAN adopted a technique proposed by Taigman et al.
[44] to regularize the generator to be close to an identity mapping
when real samples of the target domain are provided as the in-
put to the generator. The reconstruction loss in this work is based
on the shared-latent space assumption [6]. It is done by regulariz-
ing the translation to approximate the identity mapping when the
latent vectors of the source images are provided as the input to
Gy_.x. It is modeled via an auto-encoder type loss,
Lag(Ex. Gy—x. X) = Exp, [[X = Gyx (Ex (X)) 1] (5)

The same reconstruction loss is applied to the backward cycle as
Lag(Ey, Gxsy, Y).

3.3. Network learning

The goal of our network is that both generators learn to trans-
form the style of the overall image and the particular object ap-
pearances individually. The entire objective is given as follows,

L = Lcan (Ex, Gx—y, Dy, X, Y)
+ Lean(Ey, Gyx, Dx, X, Y)
+ Lag (Ex, Gy—x, X) + Lag (Ey, Gxy, Y)
+ Aimg-obj (Lobj (Ex> Gxy. By, Hy, X, X')
+ Lobj (Ex. Gxoy, By, Hy, X, X')
+ Lobj(Ey, Gy—x, Bx, Hy, Y. Y")
+ L_obj(Ey, Gy Bv, Hy, Y. Y'))

+ )\cyc—obj X
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(Lobj (Ex. Gx—y, Ey, Gy—.x, B, Hy, X, X")
+ Loobj (Ex, Gxny, Ey, Gy—ox, B, Hx, X, X')
+ Lobj (Ey, Gy_x, Ex, Gxooy, By, Hy, Y, Y')
+ Lobj(Ey. Gy—x. Ex. Gxoy. By, Hy, Y. Y"))
+ Aeyc-adv X
(Lcan(Ex, Gaey, Ey, Gy.x, Dy xeer X)

+ ﬁGAN (Ey? Gy—»x? EXa Gx—»y? Dy,yrec s Y)), (6)

and we aim to solve the following optimization problem during
model training:

min max L. (7)
Ex~Gx~>y~ DXva.xrec-
Ey’ Gy%)@ Dy ’D,Vd’rec

By, Hy,

B}"HY

4. Experimental results

Datasets Generally, most of the existing freely available
datasets [45-47] were collected during the day. In this work, we
have mainly tested our model, AugGAN-Det, on three datasets: (i)
INIT dataset [14] is proposed for on-road image translation in four
driving scenarios where object detection labels are provided. All
the data (132,201 images for training and 23,328 images for test-
ing) were collected in Tokyo, Japan; (ii) GTA dataset [16] - one of
the most famous synthetic datasets that contain both low-level and
high-level annotations including optical flow, semantic segmen-
tation, instance segmentation, object detection, and tracking. The
dataset is split into 134 K, 50 K, and 70 K frames for training, val-
idation, and testing, respectively; and (iii) BDD100k dataset [3] is
collected in many cities and regions in the US and contains 100k
driving videos recorded in diverse weather conditions at differ-
ent time-of-day. The videos are split into training (70k), valida-
tion (10k) and testing (20k). Each video’s frame at the 10th sec-
ond is annotated for image tasks, including detection and segmen-
tation. Recently, DarkFace dataset [48] provides face annotation in
poor visibility situations such as challenging lighting conditions at
nighttime. Since the faces are tiny to guide the GAN model, we
trained our model using the pedestrian labels from BDD100k. Then
the trained model performed day-to-night image-translation on
FEEDS (Face pEdestrain dEtection DataSet) dataset [49] and sam-
pled LTFT (Long-Term Face Tracking) dataset [50] to train a bet-
ter face detector to be assessed on DarkFace dataset. More specif-
ically, 4138 face-containing images from the training set of FEEDS
dataset and sampled 1000 images from the street and Bengal se-
quences of LTFT dataset were involved. There are 6000 labeled im-
ages in DarkFace dataset and the training and validation split was
done by randomly sampling 4000 and 2000 images, respectively.
Finally, we also evaluated our model on the task of cross-dataset
domain adaptation from KITTI [45] to cityscape [4G]. The former is
captured by driving around the mid-sized city of Karlsruhe in Ger-
many and consists of 7481 training images and 7518 testing im-
ages; while the latter is collected in 50 different cities in Europe
and is composed of 2975 training, 500 validation, and 1525 test-
ing images. Both datasets are designed for a suite of vision tasks
including object detection.

Previous works [10-12] that are designed explicitly for object-
preserving image transformation need semantic segmentation la-
bels to prevent significant image distortion. Since this work tries
to make a fairer comparison, we also conduct our GAN training on
both GTA and BDD100k datasets, but only the detection labels of
the same images are used. We consider car, bus, truck, and van for
GTA; car, bus, and truck for BDD100k; car for INIT. For the KITTI-to-
Cityscape cross-dataset domain adaptation, pedestrian, car, truck,
and cyclist are involved in the experiment.
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Table 2

IS of different models in INIT dataset.
Scenario CycleGAN  UNIT MUNIT  DRIT INIT DUNIT  Ours
Sunny-to-night 1.026 1.030 1.278 1.224 1118 1.259 1.344
Night-to-sunny 1.023 1.024  1.051 1.099 1.080 1.108 1.184
Sunny-to-rainy 1.073 1.075 1.146 1.207 1.152 1.225 1.287
Rainy-to-sunny 1.090 1.023  1.102 1.103 1119 1.125 1.271
Sunny-to-cloudy  1.097 1.134  1.095 1.104 1.142 1.149 1.214
Cloudy-to-sunny  1.033 1.046  1.321 1.249 1460  1.472 1.509
Average 1.057 1.055 1.166 1.164 1179 1.223 1.301

Table 3

Detection accuracy comparison - YOLOv4 trained with day-to-night-transformed images generated by
GANs. G-D2N: GTA-val-day-to-night; B-D2N: BDD100k-det-val-day-to-night; G-N: GTA-val-night; B-N:

BDD100k-det-val-night.

Train Test  NICE-GAN  CyCADA  MUNIT  AugGAN  M-AugGAN  AugGAN-Det
G-D2N G-N 0485 0.530 0.475 0.537 0.545 0.568
G-D2N B-N 0.457 0.475 0.453 0.481 0.486 0.510
(B+ G)-D2N  B-N 0.485 0.501 0.489 0.505 0.510 0.559

Architecture Both [11,12] evaluated the performance of day-to-
night image transformation with YOLOv1 and Faster R-CNN [23],
which are already somehow outdated object detectors. Moreover,
most detection applications in advanced driver assistance systems
(ADAS) or autonomous vehicles have moved to YOLOv3 or even
YOLOv4. Therefore, in this work, other than the domain adaptive
detection experiment analyzed by Faster R-CNN between KITTI and
Cityscape datasets, we conduct most of the analysis using YOLOvA4.
We follow the same protocol of the previous methods in assessing
the images transformed by different GAN models.

Implementation Our proposed model is implemented in Py-
Torch [51]. Due to the GPU memory limitation, we use an input
image resolution of 384 x 192 pixels. In our detector implemen-
tation, we adopted lightweight ResNet-18 as the backbone and
a YOLO-like (12 x 6 grid cells) head stacked on top of it. In all
of our experiments, we train source- and target-domain detectors
separately and they will later be jointly trained with the genera-
tors. Both detectors are trained for 30 epochs using SGD with a
batch size of 32, a momentum of 0.9, a learning rate of 0.0001
and a decay of 0.0005. Finally, when the training of both detec-
tors is finished, they are integrated with our GAN model to rep-
resent the CoCo loss for the generators to produce instance-aware
image-translation results. It is worth mentioning that, both detec-
tors are still trained simultaneously with our GAN model, but they
only learn from real images and the corresponding detection la-
bels. Finally, the four discriminators, two generators and two de-
tectors are jointly trained using the Adam optimizer [52] with a
batch size of 2, a learning rate of 0.0002, exponential decay rates
(B1. B2) = (0.5,0.999), epochs of 200. We set the weightings re-
lated to the multi-task loss to be Aimgobj =1, Acycobj =2, and

)\cyc—adv =5.

4.1. INIT dataset

As shown in Table 2, our results are consistently better than
other models, particularly for INIT and DUNIT, in a totally 6 sce-
narios in terms of Inception Score (IS) [53] which is an important
metric for assessing the performance of image-translation. Qualita-
tively, in the day-to-night (Fig. 4) scenario, it shows that our model
has a more balanced color contrast in terms of global-style and
object-style as compared to other competitors, especially to MUNIT
and DRIT. Then, in terms of day-to-cloudy (Fig. 5) scenario, yet, it
shows that our model can display more object-preserving results
against other competitors as indicated in the zoom-in bounding
box.

4.2. GTA dataset

Next, we evaluate our model on the synthetic dataset, GTA.
Our model clearly surpasses Multimodal-AugGAN and only needs
bounding box GT annotations. As shown in the 1st row of Table 3,
our model outperforms competing methods in terms of nighttime
detection accuracy. Qualitatively, as seen in Fig. 6, it is quite evi-
dent that our model could yield visually-plausible instance-aware
target-domain-looking results.

4.3. BDD100k dataset

In order to achieve better results in the real-driving BDD100k
dataset, we not only perform day-to-night image-translation for
BDD100k using GANs learning from GTA but also try to use both
of them. As shown in Table 3, our model consistently outperforms
other competing methods. In Fig. 7, we could easily observe that
NICE-GAN and MUNIT would sometimes turn off the front or the
rear lamps of the vehicles inside images. Even though the lamps
are turned on in some cases, the location and the color might
be wrong. AugGAN and Multimodal AugGAN could achieve bet-
ter results considering both factors. However, even with seman-
tic segmentation subtasking network, the appearance of nighttime
vehicles is still not realistic enough because the style-translation
of particular objects is not instance-aware and might be compro-
mised by the overall style of the image.

4.4. DarkFace dataset

Using face detection as the downstream detector in our GAN
for performing image-translation is possible in practice. However,
detecting tiny objects in a shallow detector to be integrated into
our GAN framework is very difficult. Therefore, we propose to train
AugGAN-Det with the pedestrian labels from BDD100k dataset,
perform D2N translation on sampled FEEDS and LTFT datasets
which provide face labels for later training powerful YOLOv4, and
then test the face detection results on the validation set of Dark-
Face dataset. It is worth mentioning that since DarkFace dataset is
very dark and is significantly different from BDD100K, YOLOv4 was
trained with the training set of DarkFace and the Day-to-Night-
transformed images from FEEDS and LTFT datasets. As can be seen
in Table 4, since MUNIT and NICE-GAN cannot darken the image
while keeping the persons in the translated images, involving im-
ages transformed by either model will trail the detection accuracy
of YOLOv4 trained only with DarkFace training set. Our AugGAN-
Det not only fulfilled the two conditions above but also achieved
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(a) Original daytime image

(b) Day-to-night images

Fig. 4. INIT Dataset (Day-to-night): A comparison of different models. From left to right - (Top) CycleGAN, UNIT and MUNIT. (Bottom) DRIT, DUNIT and Ours model, respec-

tively.

(a) Original daytime image

(b) Day-to-cloudy images

Fig. 5. INIT Dataset (Day-to-Cloudy): A comparison of different models. From left to right - (Top) CycleGAN, UNIT and MUNIT. (Bottom) DRIT, DUNIT and Ours model,

respectively.

(e) AugGAN

(c) CyCADA

(f) M-AugGAN

(d) MUNIT

(g) Ours

Fig. 6. GTA-val-day: A comparison of day-to-night transformation results done by different models.

higher detection accuracy, which clearly shows that involving day-
to-night-transformed images is also helpful in detecting faces in
an extremely dark scenario. The translated images can be seen in
Figs. 8 and 9, respectively.

4.5. Transformations of more domains

Our model is capable of learning transformation across un-
paired domain pairs where either of the domain could be in dif-
ferent weather conditions and times-of-the-day. A more thorough

demonstration is shown in Fig. 10 across the three public datasets
employed in this paper. We can easily observe that the style-
translation of particular objects is instance-aware without being
compromised by the style of the overall image.

4.6. Object detection in real-driving scenario

Since our model can provide more visual-compelling image-
translation results, nighttime detector learning from the day-to-
night transformed images generated by our model could achieve
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(e) AugGAN (f) M-AugGAN (g) Ours

Fig. 7. BDD100k-val-day: A comparison of day-to-night transformation results done by different models.

(a) Input

(c) MUNIT (d) Ours

Fig. 8. LTFT-day-to-night results generated by GANS learning from BDD100k.

(a) Input (b) NICE-GAN

(c) MUNIT (d) Ours

Fig. 9. FEEDS-day-to-night results generated by GANS learning from BDD100k.



C.-T. Lin, J.-L. Kew, CS. Chan et al.

(a) INIT-sunny

(i) BDD100k-day

(j) Day-to-cloudy
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(k) Day-to-dusk (1) Day-to-night

Fig. 10. More image-translations across different domains.

Table 4

Detection accuracy comparison - YOLOv4 trained
with DarkFace-train (baseline) and (LTFT + FEEDS)-
day-to-night-transformed images generated by GANs.
Please remind that in this setting, DarkFace-train is
mixed with the day-to-night images in each experi-

ment.
Baseline  NICE-GAN  MUNIT  AugGAN-Det
0.191 0.179 0.175 0.205

Table 5
Detection accuracy comparison for the KITTI-to-Cityscape adaptation sce-
nario.

Methods Pedestrian ~ Car Truck Cyclist ~ mAP
DT [54] 0.285 0.407 0.259  0.297 0.312
DAF [55] 0.392 0.402 0.257 0.489 0.385
DARL [56] 0.464 0.587 0.270  0.491 0.453
DAOD [57] 0.473 0.591 0.283  0.496 0.461
DUNIT [15] 0.607 0.651 0327 0577 0.541
NICE-GAN [37]  0.282 0.525 0.285 0.479 0.393
MUNIT [8] 0.482 0572  0.271 0.510 0.459
AugGAN-Det 0.610 0.681 0.348 0.585 0.556
Table 6

Different detector and generator training strategy in
the GTA case.

Detector setting (in generator training) AP

Unconverged & frozen 0.501
Converged & frozen 0.517
Jointly-trained 0.568

significantly better results in terms of nighttime vehicle detection,
as seen in Fig. 11. Besides, during the training process, our model
gradually learns to darken the overall image and turn on the rear
lamps of the front vehicles, as shown in the bottom row of Fig. 12
(from left to right).

4.7. Face detection in extremely dark scenario

Training with DarkFace images and day-to-night-transformed
images generated by our model can achieve better face detection
results in poor visibility situations. The face detection result com-
parison can be seen in Fig. 13.

4.7.1. Other domain adaptation detection results

Our model is also tested on the task of cross-dataset domain
adaptation. We follow the same experimental setup as Bhattachar-
jee et al. [15] in the KITTI-to-Cityscape domain adaptation. i.e.,
KITTI [45] dataset is the source domain and Cityscape [46] dataset
is the target domain. In this experiment, Faster R-CNN is trained
on the target-domain images and then evaluated on the source-
to-target images provided by different models including DT [54],
DAF [55], DARL [56], and DAOD [57]. This way, the performance
of image-translation done by different models could be assessed
by the detection accuracy. The detection results of translated im-
ages can be seen in Fig. 14. In the images transformed by MUNIT,
the pedestrian and the car inside the red boxes are not preserved.
Therefore, they cannot be detected and leads to a lower detection
accuracy in Table 5. In our proposed approach, the generator learns
to perform image-translation while keeping objects detectable by
the target-domain detector as much as possible. DUNIT applies an
off-the-shelf object detector in training GAN, which is why the de-
tection accuracy is significantly higher than NICE-GAN and MUNIT.
Our model outperforms other models in this task in terms of per-
class AP and mAP because the generator is jointly trained with the
object detector to learn to generate object-preserving and instance-
aware translated images gradually.

5. Further model analysis

In the journey of this work to pursue visually-better and
quantitatively-beneficial results, we performed some analysis tar-
geting better architecture and training strategies.

5.1. Detector and generator training

At the early stage of this work, we found that the interaction
between the detector and the generator is very similar to the one
between the discriminator and the generator. i.e., both the detec-
tor and the discriminator can overpower the generator. Inspired
by label smoothing [41] that proposed to prevent the discrimina-
tor from being overconfident, we tried to attain the balance be-
tween the generator and the detector by controlling the detector’s
training convergence. We conducted three experiments to assess
how an object detector is involved in generator training. As seen
in Table 6, an unconverged and frozen detector can only guide the
generator to yield objects with very-limited target-domain-style
appearances, thus leading to lower AP. A converged and frozen de-
tector tends to provide a non-informative back-propagation signal
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(b)

(e) ()

Fig. 11. YOLOv4 (trained with BDD100k-det-val-day day-to-night-transformed images generated by GANs learning from BDD100k-seg and GTA-train) detection result com-
parison on BDD100k-det-val-night: (a) YOLOv4 trained with images generated by NICE-GAN; (b) YOLOv4 trained with images generated by CyCADA; (c) YOLOv4 trained with
images generated by MUNIT; (d) YOLOv4 trained with images generated by AugGAN; (e) YOLOv4 trained with images generated by Multimodal AugGAN; (f) YOLOv4 trained

with images generated by our work.

(a) Original daytime image

(b) Day-to-night images during the learning process

Fig. 12. The learning process of NICE-GAN and our model. (Left image) a daytime image from BDD100k-val-day; (top) NICE-GAN; (bottom) our work.

(b)

Fig. 13. YOLOv4 detection results on DarkFace-val set with different settings: (a) YOLOv4 trained with DarkFace training set only; (b) YOLOv4 trained with DarkFace training
set and (LTFT + FEEDS)-day-to-night-transformed images generated by NICE-GAN; (c) YOLOv4 trained with DarkFace training set and (LTFT + FEEDS)-day-to-night-transformed
images generated by MUNIT; (d) YOLOv4 trained with DarkFace training set and (LTFT + FEEDS)-day-to-night-transformed images generated by AugGAN-Det.

Fig. 14. KITTI-to-Cityscape results: (1st row) original images; (2nd row) detection results in MUNIT-transformed images (pedestrian and cars cannot be detected because they
are not preserved during image-translation); (3rd row) detection results (green bounding boxes) of images transformed by this work. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

to the generator and simply increases its loss. When the detector
is jointly trained with the generator, the generator continuously
learns to generate realistic and target-domain-detector-detectable
objects.

5.2. Ablation study

Our network design assumes that object detectors, through
CoCo loss, can serve as an auxiliary regularization for image-to-
image translation. However, object consistency loss for both image-
translation phases in both cycles might still be helpful to some
extent in terms of detection accuracy. The FID and the detection

10

analysis of our model variations is shown in Table 7. It is ev-
ident that CoCo loss is more important than the object consis-
tency losses, as seen in the top two rows. In contrast, a single
detector trained by using day and night images to perform ob-
ject consistency loss and CoCo loss can only provide inferior re-
sults. Finally, as seen in the last row, the best results are achieved
by regularizing the generators with daytime and night detectors.
That is, a daytime detector for the image-reconstruction phase in
the forward cycle and image-translation phase in the backward cy-
cle; while a nighttime detector for the image-translation phase in
the forward cycle and image-reconstruction phase in the backward
cycle.



C-T. Lin, J.-L. Kew, CS. Chan et al.

40
Real-Night
Real-Day
D2N

301
201
10+
0
-101 ‘

—40

=30 20

10

-20 -10 0 30

(a) GTA

Pattern Recognition 138 (2023) 109416

40
Real-Night

301 Real-Day
20 . . D2N

10| RTELY The R T

0 MR AT S L AL
-10 R R W L s LA Y
~20 ot
-30
—4039 -20 -10 0 10 20 30

(b) BDD100k

Fig. 15. t-SNE visualization results in GTA and BDD100k cases: Green/Red/Blue points are daytime/nighttime/day-to-night-transformed cropped vehicles, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7

Ablation study of object-consistency and detector (trained with day,
night or day + night) comparison in terms of FID and detection accu-
racy - detectors trained with transformed images (BDD100k-det-val-
day) generated by GANs (learning from both GTA and BDD100k) and
tested on BDD100k-det-val-night. For FID, lower is better.

Models FID AP

Two detectors in image-trans phases only 0.414 0.528
Two detectors in image-recons phases only 0.512  0.535
Only one detector in both phases and cycles  0.451 0.525
Two detectors in both phases and cycles 0309 0.559

Table 8
Training a nighttime detector (YOLOv4) using different data: the
testing data is GTA-val-night2.

Training data AP

GTA-val-day 0.455
GTA-val-day + GTA-val-day-to-night 0.507
GTA-val-day-to-night(GAN w/ daytime detector only)  0.491
GTA-val-day-to-night 0.542
GTA-val-night1 0.563
GTA-val-day-to-night + GTA-val-night1 0.622

5.3. Different training data for a target-domain detector

We have conducted several experiments to know how the
transformed images can help train a nighttime detector, as seen
in Table 8. GTA-val-night dataset is split into equal-sized GTA-val-
nightl & GTA-val-night2. We found that using GTA-val-day alone
achieved the lowest accuracy. When training generators of both
domains with daytime detector only, the image-translation qual-
ity degrades so using detectors of both domains is essential. Mix-
ing day-to-night data with real-nighttime data achieved the high-
est accuracy, which proves that training a nighttime detector with
real and synthetic data is valuable.

5.4. Additional subjective and objective evaluation

To further objectively evaluate the quality of the generated
nighttime images in the GTA case, we use FID [58] for analyzing
the similarity between the day-to-night-transformed images and
the real nighttime ones. In theory, the day-to-night-transformed
images are supposed to be also helpful in performing seman-
tic segmentation for nighttime vehicles. We adopt the popular
FCN8s (VGG16-based) [59] to report the FCN scores and com-
pletely follow the protocol mentioned by other GAN models, such

1

Table 9

FID scores, FCN scores, and MOS of the GTA case:
note that FID is estimated between GTA-val-day-to-
night transformed images and GTA-val-night images;
FCN models are trained by the former and testing on
the latter; MOS is evaluated by showing observers the
former images of different models. For FID, lower is

better.
GAN model FID FCN-Acc ~ FCN-loU
NICE-GAN [37] 2.466 0.925 0.825
MUNIT [8] 1.066 0.939 0.831
AugGAN [11] 1.020  0.940 0.855
M-AugGAN [12] 1.023 0.941 0.860
AugGAN-Det 0.799 0.947 0.887

as Lin et al. [12], for a fairer comparison. How much the day-
to-night-transformed images help perform semantic segmentation
for nighttime vehicles is also analyzed using the popular FCN8s
(VGG16-based) [59] to report the FCN scores. Finally, in order to
know if day-to-night-transformed images generated by our model,
AugGAN-Det, are visually better, we also conducted a subjective
evaluation of mean opinion score (MOS) to provide a visual rat-
ing (from one to five, the higher, the better) for our method and
other competing ones. There are 51 random non-expert observers
involved and the questions are designed to demonstrate three fac-
tors. The first one considers the instance-aware image fidelity. i.e.,
the color, and the location of the vehicle lamps in the day-to-night
case. The second one is the overall style-transfer quality. The third
one is the level of object preservation. These three factors are in-
tegral for determining if day-to-night-transformed images are re-
alistic. As seen in Table 9, our model achieves the lowest FID be-
cause the day-to-night-transformed vehicles are more realistic in
terms of the nighttime-looking texture of the vehicle body, bright-
ness of vehicles’ rear lamps, and the sharpness of vehicle’s body at
nighttime. Our model also leads to higher FCN scores because FCN
is trained to better understand vehicle’s nighttime appearance. In
Table 10, the MOS comparison indicates that our work outperforms
MUNIT and NICE-GAN in terms of the fidelity of the rear lamps and
better object preservation. Multimodal AugGAN could achieve bet-
ter object preservation than both MUNIT and NICE-GAN, but object
appearances are not instance-aware enough.

5.5. t-SNE visualization

t-SNE [60] is a non-linear technique widely used for dimension-
ality reduction and can thus visualize high-dimensional data. This
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Table 10

MOS of our model and other competing methods in
both GTA and BDD100 cases: the former learns from
GTA only and the latter learns from BDD100k + GTA.

GAN model GTA BDD100k
NICE-GAN [37] 3.049 2.289
MUNIT [8] 2.331 2.095
Multimodal AugGAN [12] 2.422 2.810
AugGAN-Det 3.763  3.126

powerful tool can find the patterns in the data by identifying ob-
served clusters based on the similarity of data points with multiple
features. t-SNE works well in our case because it can group objects
with similar appearance together when they are mapped from high
to low dimensions. Figure 15 shows the visualization results of t-
SNE on GTA and BDD100k datasets. It is evident that most of the
day-to-night-transformed images (blue dots) are very close to the
real nighttime ones (red dots). That is, our proposed method has
successfully made the transformed vehicles carry the characteris-
tics of the real nighttime ones.

6. Conclusion and future work

In this paper, we propose CoCo loss to leverage object detec-
tors for performing instance-aware image-translation via a GAN
model. We empirically demonstrate that the generator learns to
lower the detection loss for the objects to be transformed to the
style of their counterparts in the target domain. Compared to pre-
vious models, which e.g., require pixel-level semantic segmentation
to force the latent distribution to be object-preserving, this work
only needs bounding box annotations which are significantly eas-
ier to acquire. As to the instance-aware GAN models, our model,
AugGAN-Det, internalizes global and object style-transfer without
explicitly aligning the instance features. Most importantly, a detec-
tor is not required at test time. Therefore, most published datasets
for object detection become valuable, since labeled data in e.g., dif-
ferent weather conditions and times-of-the-day can be converted
“for free” for an object detector to achieve better results in a des-
ignated scenario. The limitation of this work is that the objects in
the image cannot be too small. Therefore, we trained the detector
in our GAN model by the whole body of a person instead of his
face in the DarkFace experiment. We plan to create a multimodal
version of this model in the future. Therefore, a single annotation
can be transformed in an instance-aware manner to multiple im-
ages in the target domain to further improve object detectors’ ac-
curacy.
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