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a b s t r a c t 

Recent advances in generative adversarial networks (GANs) have been proven effective in performing do- 

main adaptation for object detectors through data augmentation. While GANs are exceptionally success- 

ful, those methods that can preserve objects well in the image-to-image translation task usually require 

an auxiliary task, such as semantic segmentation to prevent the image content from being too distorted. 

However, pixel-level annotations are difficult to obtain in practice. Alternatively, instance-aware image- 

translation model treats object instances and background separately. Yet, it requires object detectors at 

test time, assuming that off-the-shelf detectors work well in both domains. In this work, we present 

AugGAN-Det, which introduces Cycle-object Consistency (CoCo) loss to generate instance-aware trans- 

lated images across complex domains. The object detector of the target domain is directly leveraged in 

generator training and guides the preserved objects in the translated images to carry target-domain ap- 

pearances. Compared to previous models, which e.g., require pixel-level semantic segmentation to force 

the latent distribution to be object-preserving, this work only needs bounding box annotations which are 

significantly easier to acquire. Next, as to the instance-aware GAN models, our model, AugGAN-Det, inter- 

nalizes global and object style-transfer without explicitly aligning the instance features. Most importantly, 

a detector is not required at test time. Experimental results demonstrate that our model outperforms re- 

cent object-preserving and instance-level models and achieves state-of-the-art detection accuracy and 

visual perceptual quality. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recent progress in the domain of object detection has led to 

 remarkable performance improvement, particularly for one-stage 

bject detectors, which provide a good balance between detection 

peed and accuracy. This is achieved with sophisticated training 

trategies such as data augmentation [1] to increase the variabil- 

ty of the input images, so that the object detector has better ro- 

ustness on e.g., those images obtained in different environments. 

owever, as shown by Braun et al. [2] , Yu et al. [3] , the overall de-

ection performance still drops significantly when the trained de- 

ector model is deployed in a new domain different from the (aug- 

ented) training set. A natural solution to this limitation is to per- 

orm image-to-image translation for the labeled data in a source 

omain (e.g., daytime images) to a target domain (e.g., nighttime 

mages). 
∗ Corresponding author. 
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A popular solution is CycleGAN [4] that performed unpaired 

mage-to-image translation with the introduction of cycle consis- 

ency in Generative Adversarial Networks (GANs) [5] . It encourages 

i-directional image translation with regularized structural output. 

ince then, various works [6–9] have been proposed and achieved 

mpressive results in image translation tasks, such as horse ↔ ze- 

ra, vangogh ↔ photo, and cat ↔ dog. 

However, these existing methods are prone to fail at preserving 

he objects, as illustrated in Fig. 1 . That is, existing solutions [10–

3] with explicit object preservation may retain the objects, but 

heir appearance might not be able to adapt sufficiently to the 

arget domain. Recently, instance-aware image translation mod- 

ls [14,15] aim to improve this issue by aligning instance features 

sing either detection labels or an off-the-shelf object detector for 

he generators. For instance, INIT [14] employed both the instance 

nd global styles to guide the generation of the target domain ob- 

ects. Unfortunately, their model neglects the instance-level infor- 

ation at the test time and only utilizes the global information. 

UNIT [15] applied an off-the-shelf general object detector and an 

nstance-level encoder to extract instance-boosted features during 

https://doi.org/10.1016/j.patcog.2023.109416
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109416&domain=pdf
mailto:cs.chan@um.edu.my
mailto:shlai@microsoft.com
https://doi.org/10.1016/j.patcog.2023.109416
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Fig. 1. Day-to-night image translation results of a sample image from GTA dataset [16] : (a) Original daytime image; Results of models (b) without and (c) with object 

preservation; and (d) our proposed with instance-aware image translation learning from the target-domain detector. 

Fig. 2. How a target-domain detector can help train a GAN to perform instance-aware image-translation. 
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earning, and aligned the instance features between the original 

nd the (day-to-night) transformed images. Yet, in the test time, 

he object detector is still required to improve the performance. 

In this paper, for the first time, we introduce an instance-aware 

AN framework named as AugGAN-Det to jointly train a generator 

ith an object detector (for image-object style) and a discrimina- 

or (for global style) as shown in Fig. 2 . With this, a novel C ycle-

 bject Co nsistency (CoCo) loss is proposed to preserve the instance 

evel characteristic during image-to-image translation. That is, the 

bject detector (i.e., bounding box) of the target domain will be 

irectly involved in training the generator and resulting in guid- 

ng the image-objects in the translated images to carry realistic 

arget-domain appearances across complex domains. Most impor- 
2 
antly, the object detector is not required at the test time in con- 

rast to Bhattacharjee et al. [15] . 

Our contributions are as follows: (i) We design an image- 

o-image translation network which jointly trains a generator 

ith an object detector (for object-style) and a discriminator 

for global-style) by leveraging a novel cycle consistency loss 

ubbed CoCo. Most importantly, an object detector is not re- 

uired at test time; (ii) We quantitatively demonstrate that solely 

sing the object labels (i.e., bounding box) for learning object- 

reserving image translation can achieve better results than lever- 

ging pixel-level semantic segmentation into GAN training [10–

2] (see Table 3 ); and (iii) Extensive experiments are conducted. 

ur method achieves better quantitative and qualitative results 
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Table 1 

Network architecture of encoders, generators, discriminators and detectors in 

instance-aware image-to-image translation model: N, K, S denote the number of 

convolution filters, kernel size, and stride; n is the number of neurons of the fully- 

connected layers and the last layer of detector assumes C = 1 . Please refer to Fig. 3 

for knowing where E, G, D, B, and H are used in the overall network structure. 

Layer Encoders (E) Layer info 

1 CONV, ReLU N64,K7,S1 

2 CONV, ReLU N128,K3,S1 

3 CONV, ReLU N256,K3,S2 

4 CONV, ReLU N512,K3,S2 

5 RESBLK, ReLU N512,K3,S1 

6 RESBLK, ReLU N512,K3,S1 

Layer Generators (G) Layer info 

1 RESBLK, ReLU N512,K3,S1 

2 RESBLK, ReLU N512,K3,S1 

3 DCONV, ReLU N128,K3,S2 

4 DCONV, ReLU N64,K3,S2 

5 CONV, Tanh N3,K7,S1 

Layer Discriminator (D) Layer info 

1 CONV, LeakyReLU N64, K4, S2 

2 CONV, LeakyReLU N128, K4, S2 

3 CONV, LeakyReLU N256, K4, S2 

4 CONV, LeakyReLU N512, K4, S2 

5 CONV, LeakyReLU N512, K4, S1 

6 CONV, Sigmoid N1, K4, S1 

Layer Detectors (B + H) Layer info 

1 CONV, ReLU N64,K7,S2 

2 Maxpool K3,S2 

3 CONV, ReLU N64,K3,S2 

4 CONV, ReLU N128,K3,S2 

5 CONV, ReLU N256,K3,S2 

6 CONV, ReLU N512,K3,S2 

7 Avgpool K12x6 

8 Fully-connected, ReLU n4096 

9 Fully-connected n792 
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ainly on three popular benchmarks namely INIT, GTA and 

DD100k . 

. Related work 

.1. Object detection 

In the past few years, object detectors have achieved remark- 

ble performance with the advent of CNNs. A modern detector is 

sually composed of two parts, a pre-trained CNN backbone and 

 detection head to predict the classes and bounding boxes of 

bjects. In general, object detectors can be categorized into two 

amps, i.e., one-stage object detectors [1,17–20] and two-stage ob- 

ect detectors [21–26] . One-stage object detectors recently received 

ore attention, since real-time applicability is of great and practi- 

al interest in many applications. 

.2. Data augmentation 

Data augmentation is an essential technique to increase the ro- 

ustness and to achieve higher detection accuracy of an object de- 

ection model. For example, Random Erasing [27] and CutOut [28] , 

ried to simulate object occlusion in the hope that the detector 

earns to visually understand the essence of objects’ appearances 

ven though only part of an object can be seen. Works such as 

ropOut [29] , DropConnect [30] and DropBlock [31] apply a similar 

oncept to feature maps. More recently, MixUp [32] , CutMix [33] , 

ridMix [34] and Mosaic [1] were proposed to combine multi- 

le images for additional data augmentation. However, the above- 

ntroduced methods are often not specifically designed to enhance 

 model’s robustness across domains. As pointed out in Braun et al. 

2] , the (pedestrian) detector is recommended to be trained using 

he data of the domain for the detector to be deployed to achieve 
3 
he highest accuracy. Thus, standard data augmentation strategies 

re not sufficient across domains. 

.3. Generative adversarial networks 

Due to the recent success of GANs [5] , many approaches 

dopted GANs for the image translation task. For example, 

ix2Pix [35] provides visually plausible images in the target do- 

ain given paired training data. By introducing the cycle consis- 

ency constraint to encourage bidirectional image translation with 

egularized structural output, CycleGAN [36] achieved astonishing 

mage translation results when only unpaired data is available. 

NIT [6] further applied weight-sharing constraints to increase 

he translation consistency. Usually, GAN models abandon the dis- 

riminator once the training process is completed. However, NICE- 

AN [37] demonstrated that the encoder trained by the adver- 

ary loss in the discriminator is still informative. Therefore, reusing 

iscriminators for encoding in generating images is quantitatively 

eneficial. 

To enforce the structure-consistency between the source and 

he generated images, CyCADA [10] tried to incorporate a down- 

tream segmentation model in the forward cycle and a seman- 

ic consistency loss in the backward cycle. AugGAN [11] proposed 

o utilize auxiliary segmentation tasks in a multi-tasking fashion 

n both cycles to prevent content distortion. The major difference 

etween CyCADA and AugGAN is that the former only involves 

 downstream segmentation task in the forward cycle. AugGAN 

esigned multi-tasking generators that learn to perform image- 

ranslation and segmentation simultaneously in both cycles. Bicy- 

leGAN [38] is a multimodal image-to-image translation model, 

ut requires paired data that cannot be easily acquired in real- 

riving scenarios. Both DRIT [39] and MUNIT [8] are multimodal 

ANs able to work with unpaired images. However, the overall im- 

ge style and particular objects appearances cannot be transformed 

ndividually. Multimodal AugGAN [12] , a multimodal structure- 

onsistent image-to-image translation network, integrates semantic 

egmentation models for both domains with a multimodal image- 

ranslation network. Compared to AugGAN, Multimodal AugGAN 

an provide diverse and visually compelling results in the target 

omain with better object preservation due to the multimodal 

ehavior. However, the necessity of pixel annotations limits the 

ethod’s applicability. Both INIT [14] and DUNIT [15] are instance- 

ware GAN models. The former method employs the instance and 

he global style to guide the generation of target-domain objects. 

owever, the model discards the instance-level information at test 

ime, and only the global module is used. The latter work ap- 

lies an off-the-shelf object detector (trained by MSCOCO [40] ) and 

n instance-level encoder to extract instance-boosted features dur- 

ng learning, and align the instance features between the original 

nd transformed images. As shown in Braun et al. [2] , for pedes- 

rian detection, the highest detection accuracy is obtained when 

he training and test data are from the same domain (i.e., time-of- 

ay). However, MSCOCO only contains less than 1% low-light im- 

ges, and DUNIT still requires an object detector at test time to 

everage the object instance features. 

. Proposed model 

In the image translation problem, the goal is to learn a net- 

ork between two visual domains X ⊂ R 

H×W ×3 and Y ⊂ R 

H×W ×3 . 

revious methods sometimes expect that an n -class segmenta- 

ion ground-truth, i.e., ˆ X ⊂ R 

H×W and 

ˆ Y ⊂ R 

H×W is available so 

hat image-structure of a transformed image is consistent with its 

ounterpart in the original domain. However, obtaining pixel-wise 

nnotation is very expensive. Therefore, in this work, we only as- 

ume that bounding boxes with associated object labels from two 
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Fig. 3. Overall structure of the proposed cycle-object-consistent image-to-image translation network: x : sampled image from domain X ; x ′ : bounding box Ground-Truth of 

x ; y trans : translated result; x rec : self-reconstructed image given x ; x cyc : cycle-reconstructed image corresponding to x. 
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isual domains, X ′ ⊂ R 

M×N(C+5 k ) and Y ′ ⊂ R 

M×N(C+5 k ) , i.e., k objects 

ith C classes inside M × N grid cells are available. Our objective 

s to learn the mapping G x → y and G y → x conditioned on X ′ and Y ′ , 
iven X and Y . 

The detailed architecture of our network is given in Table 1 . Our 

etector comprises a backbone, pretrained ResNet-18, and a detec- 

ion head. It is worth mentioning that the grid cell size is 12 × 6

nd each grid cell could predict two objects (described by u , v , w ,

 and an objectness score) of the same class. In this work, when C

lasses of objects are considered, the neurons of the last layer be- 

ome 12 × 6 × (5 × 2 + C) for a 384 × 192 image. For the discrimi-

ators, we follow the design of PatchGAN [35] because it is flexible 

o work on arbitrarily-sized images in a fully convolutional fashion. 

.1. Detection loss 

.1.1. Cycle-object consistency (CoCo) loss 

Our model utilizes a target-domain detector instead of an off- 

he-shelf object detector [15] to guide the generator. Generally, we 

xpect that given the encoded latent vector generated by E x , the 

enerator G x → y learns to generate images in an attempt to fool the 

iscriminator D x while the object consistency is kept. As pointed 

ut by Chu et al. [36] , a strong cycle-consistency will enforce the 

econstructed information to be hidden in the translated image, 

 trans . Therefore, in our cycle-reconstruction phase, another dis- 

riminator is added to constrain the cycle-adversarial consistency 

etween x and x rec which is produced by E y , the generator G y → x .

ost importantly, we propose Cycle-object Consistency (CoCo) loss 

s shown in Fig. 3 . It keeps the objects in both y trans and x cyc de-

ectable at the same time in the forward cycle and in both x trans 

nd y cyc in the backward cycle. i.e., to encourage detection result 

 x (B x (x cyc )) , H y (B y (y cyc )) predicted by the detection backbones, B x 
nd B y , and the prediction heads, H x and H y , to be similar to the

etection Ground-Truth, x ′ , y ′ , respectively. That is, it enforces ob- 

ect(s) reservation in the translated images. 

Technically, we incorporate a one-stage object detector into the 

raining of our generators. In the forward cycle, the loss of an ob- 

ect whose bounding box center is located inside grid cell (i, j) is 

efined by 

 obj (E x , G x → y , E y , G y → x , B x , H x , X, X 

′ ) = 

 x,x ′ ∼p X,X ′ 

[ k ∑ 

n =1 

( 
∑ 

p∈{ u, v } 
αp (G 

p 
i j,n 

(x cyc ) − G 

p 
i j 
(x ′ )) 2 
4

+ 

∑ 

q ∈{ w,h } 
αq ( 

√ 

G 

q 
i j,n 

(x cyc ) −
√ 

G 

q 
i j,n 

(x ′ ) ) 2 

+ (G 

o 
i j,n (x cyc ) − G 

o 
i j,n (x ′ )) 2 ) + 

C ∑ 

c=1 

(G 

c 
i j,n (x cyc ) − G 

c 
i j,n (x ′ )) 2 ) 

] 
, (1) 

here x cyc = G y → x (E y (G x → y (E x (x )))) . G 

c 
i j,n 

(x cyc ) is the class score

f grid cell (i, j) . G 

o 
i j,n 

(x cyc ) , G 

u 
i j,n 

(x cyc ) , G 

v 
i j,n 

(x cyc ) , G 

w 

i j,n 
(x cyc ) , and

 

h 
i j,n 

(x cyc ) are the objectness score, the coordinate, the width, and 

he height of the n th predicted output, given the input image 

 . The corresponding ground-truth values are G 

c 
i j,n 

(x ′ ) , G 

o 
i j,n 

(x ′ ) ,
 

u 
i j,n 

(x ′ ) , G 

v 
i j,n 

(x ′ ) , G 

w 

i j,n 
(x ′ ) , and G 

h 
i j,n 

(x ′ ) , respectively. In this work,

e set αu = αv = αw 

= αh = 5. 

As to a non-object grid, i.e., no object whose center of object 

indow locates inside grid cell (i, j) , its loss function is given by 

 ¬ obj (E x , G x → y , E y , G y → x , B x , H x , X, X 

′ ) = 

E x,x ′ ∼p X,X ′ 

[ 

k ∑ 

n =1 

α¬ obj (G 

o 
i j,n (x cyc ) − G 

o 
i j,n (x ′ )) 2 

] 

, (2) 

here α¬ obj = 0 . 5 . As to the backward cy- 

le, the object-grid and non-object grid loss is 

tated as L obj (E y , G y → x , E x , G x → y , B y , H y , Y, Y ′ ) and

 ¬ obj (E y , G y → x , E x , G x → y , B y , H y , Y, Y ′ ) . 

.1.2. Image-translation object-consistency loss 

Aside from CoCo loss, we found that the interaction between 

he object detector and generator is very similar to the one be- 

ween the discriminator and generator, i.e., both the object de- 

ector and the discriminator can overpower the generator. In- 

pired by label smoothing [41] that proposed to prevent the dis- 

riminator from being overconfident, we also try to attain a bal- 

nce between the generator and the object detector by controlling 

he detector’s training convergence. For this purpose, we experi- 

ented with GTA dataset. As seen in Table 6 , an unconverged and 

rozen object detector can only guide the generator to yield ob- 

ects with very-limited target-domain-style appearances, thus lead- 

ng to a very low AP (Average Precision) [42] . Meanwhile, a con- 

erged and frozen detector tends to provide a non-informative 

ack-propagation signal to the generator and has a better AP than 

n unconverged and frozen object detector. Finally, when the ob- 

ect detector is jointly trained with the generator, it achieves the 

ighest AP as the generator continuously learns to generate realis- 

ic and target-domain-detector-detectable objects. 
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Technically, given the translated images y trans , the 

mage-translation object-consistency losses are modeled via 

 obj (E x , G x → y , B y , H y , X, X ′ ) and L ¬ obj (E x , G x → y , B y , H y , X, X ′ ) . Anal-

gously, the additional losses utilized in the backward cycle 

re L obj (E y , G y → x , B x , H x , Y, Y ′ ) and L ¬ obj (E y , G y → x , B x , H x , Y, Y ′ ) ,
espectively. 

.2. Other losses 

.2.1. Adversarial loss 

There are two kinds of adversarial losses in our model. The first 

ne is designed for leading x and y to be properly translated to 

 and x , respectively, in terms of style. In this work, we apply

east-squares adversarial loss [43] because it yields better image- 

ranslation results in our experiments. The first adversarial loss 

unction is given as 

 GAN (E x , G x → y , D y , X, Y ) = E y ∼p Y 

[
(D y (y )) 2 

]
+ E x ∼p X 

[
(1 − D y (G x → y (E x (x )))) 2 

]
, (3) 

here E x and G x → y try to generate transformed images 

 x → y (E x (x )) that look similar to images from domain Y , while D y 

ims to distinguish between translated samples G x → y (E x (x )) and 

eal samples y in terms of style. In the image-translation phase of 

he backward cycle, the adversarial loss is L GAN (E y , G y → x , D x , X, Y ) . 

In order to encourage x rec and y rec to be close to the original 

 and y , the second adversarial loss uses two additional discrimi- 

ators, D x,x rec and D y,y rec , respectively. The cycle-adversarial loss in 

he forward cycle is modeled as follows, 

 GAN (E x , G x → y , E y , G y → x , D x,x rec 
, X ) = E x ∼p X 

[
(D x,x rec 

(x )) 2 
]

+ 

E x ∼p X 

[
(1 − D x,x rec 

(G y → x (E y (G x → y (E x (x )))))) 2 
]
. (4

he backward cycle is modeled via an analogous loss, 

 GAN (E y , G y → x , E x , G x → y , D y,y rec , Y ) . 

.2.2. Self-reconstruction loss 

CycleGAN adopted a technique proposed by Taigman et al. 

44] to regularize the generator to be close to an identity mapping 

hen real samples of the target domain are provided as the in- 

ut to the generator. The reconstruction loss in this work is based 

n the shared-latent space assumption [6] . It is done by regulariz- 

ng the translation to approximate the identity mapping when the 

atent vectors of the source images are provided as the input to 

 y → x . It is modeled via an auto-encoder type loss, 

 AE (E x , G y → x , X ) = E x ∼p X [ | x − G y → x (E x (x ) ) | 1 ] . (5) 

he same reconstruction loss is applied to the backward cycle as 

 AE (E y , G x → y , Y ) . 

.3. Network learning 

The goal of our network is that both generators learn to trans- 

orm the style of the overall image and the particular object ap- 

earances individually. The entire objective is given as follows, 

 = L GAN (E x , G x → y , D y , X, Y ) 

+ L GAN (E y , G y → x , D x , X, Y ) 

+ L AE (E x , G y → x , X ) + L AE (E y , G x → y , Y ) 

+ λimg-obj 

(
L obj (E x , G x → y , B y , H y , X, X 

′ ) 
+ L ¬ obj (E x , G x → y , B y , H y , X, X 

′ ) 
+ L obj (E y , G y → x , B x , H x , Y, Y ′ ) 
+ L ¬ obj (E y , G y → x , B x , H x , Y, Y ′ ) 

)
+ λcyc-obj ×
5 
(
L obj (E x , G x → y , E y , G y → x , B x , H x , X, X 

′ ) 
+ L ¬ obj (E x , G x → y , E y , G y → x , B x , H x , X, X 

′ ) 
+ L obj (E y , G y → x , E x , G x → y , B y , H y , Y, Y ′ ) 
+ L ¬ obj (E y , G y → x , E x , G x → y , B y , H y , Y, Y ′ ) 

)
+ λcyc-adv ×(

L GAN (E x , G x → y , E y , G y → x , D x,x rec 
, X ) 

+ L GAN (E y , G y → x , E x , G x → y , D y,y rec 
, Y ) 

)
, (6) 

nd we aim to solve the following optimization problem during 

odel training: 

min 

 x ,G x → y , 

 y ,G y → x , 

B x ,H x , 
B y ,H y 

max 
D x ,D x,x rec , 

D y ,D y,y rec 

L . (7) 

. Experimental results 

Datasets Generally, most of the existing freely available 

atasets [45–47] were collected during the day. In this work, we 

ave mainly tested our model, AugGAN-Det, on three datasets: (i) 

NIT dataset [14] is proposed for on-road image translation in four 

riving scenarios where object detection labels are provided. All 

he data (132,201 images for training and 23,328 images for test- 

ng) were collected in Tokyo, Japan; (ii) GTA dataset [16] - one of 

he most famous synthetic datasets that contain both low-level and 

igh-level annotations including optical flow, semantic segmen- 

ation, instance segmentation, object detection, and tracking. The 

ataset is split into 134 K, 50 K, and 70 K frames for training, val-

dation, and testing, respectively; and (iii) BDD100k dataset [3] is 

ollected in many cities and regions in the US and contains 100k 

riving videos recorded in diverse weather conditions at differ- 

nt time-of-day. The videos are split into training (70k), valida- 

ion (10k) and testing (20k). Each video’s frame at the 10th sec- 

nd is annotated for image tasks, including detection and segmen- 

ation. Recently, DarkFace dataset [48] provides face annotation in 

oor visibility situations such as challenging lighting conditions at 

ighttime. Since the faces are tiny to guide the GAN model, we 

rained our model using the pedestrian labels from BDD100k. Then 

he trained model performed day-to-night image-translation on 

EEDS (Face pEdestrain dEtection DataSet) dataset [49] and sam- 

led LTFT (Long-Term Face Tracking) dataset [50] to train a bet- 

er face detector to be assessed on DarkFace dataset. More specif- 

cally, 4138 face-containing images from the training set of FEEDS 

ataset and sampled 10 0 0 images from the street and Bengal se- 

uences of LTFT dataset were involved. There are 60 0 0 labeled im- 

ges in DarkFace dataset and the training and validation split was 

one by randomly sampling 40 0 0 and 20 0 0 images, respectively. 

inally, we also evaluated our model on the task of cross-dataset 

omain adaptation from KITTI [45] to cityscape [46] . The former is 

aptured by driving around the mid-sized city of Karlsruhe in Ger- 

any and consists of 7481 training images and 7518 testing im- 

ges; while the latter is collected in 50 different cities in Europe 

nd is composed of 2975 training, 500 validation, and 1525 test- 

ng images. Both datasets are designed for a suite of vision tasks 

ncluding object detection. 

Previous works [10–12] that are designed explicitly for object- 

reserving image transformation need semantic segmentation la- 

els to prevent significant image distortion. Since this work tries 

o make a fairer comparison, we also conduct our GAN training on 

oth GTA and BDD100k datasets, but only the detection labels of 

he same images are used. We consider car, bus, truck, and van for 

TA; car, bus, and truck for BDD100k; car for INIT. For the KITTI-to- 

ityscape cross-dataset domain adaptation, pedestrian, car, truck, 

nd cyclist are involved in the experiment. 
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Table 2 

IS of different models in INIT dataset. 

Scenario CycleGAN UNIT MUNIT DRIT INIT DUNIT Ours 

Sunny-to-night 1.026 1.030 1.278 1.224 1.118 1.259 1.344 

Night-to-sunny 1.023 1.024 1.051 1.099 1.080 1.108 1.184 

Sunny-to-rainy 1.073 1.075 1.146 1.207 1.152 1.225 1.287 

Rainy-to-sunny 1.090 1.023 1.102 1.103 1.119 1.125 1.271 

Sunny-to-cloudy 1.097 1.134 1.095 1.104 1.142 1.149 1.214 

Cloudy-to-sunny 1.033 1.046 1.321 1.249 1.460 1.472 1.509 

Average 1.057 1.055 1.166 1.164 1.179 1.223 1.301 

Table 3 

Detection accuracy comparison - YOLOv4 trained with day-to-night-transformed images generated by 

GANs. G-D2N: GTA-val-day-to-night; B-D2N: BDD100k-det-val-day-to-night; G-N: GTA-val-night; B-N: 

BDD100k-det-val-night. 

Train Test NICE-GAN CyCADA MUNIT AugGAN M-AugGAN AugGAN-Det 

G-D2N G-N 0.485 0.530 0.475 0.537 0.545 0.568 

G-D2N B-N 0.457 0.475 0.453 0.481 0.486 0.510 

(B + G)-D2N B-N 0.485 0.501 0.489 0.505 0.510 0.559 
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Architecture Both [11,12] evaluated the performance of day-to- 

ight image transformation with YOLOv1 and Faster R-CNN [23] , 

hich are already somehow outdated object detectors. Moreover, 

ost detection applications in advanced driver assistance systems 

ADAS) or autonomous vehicles have moved to YOLOv3 or even 

OLOv4. Therefore, in this work, other than the domain adaptive 

etection experiment analyzed by Faster R-CNN between KITTI and 

ityscape datasets, we conduct most of the analysis using YOLOv4. 

e follow the same protocol of the previous methods in assessing 

he images transformed by different GAN models. 

Implementation Our proposed model is implemented in Py- 

orch [51] . Due to the GPU memory limitation, we use an input 

mage resolution of 384 × 192 pixels. In our detector implemen- 

ation, we adopted lightweight ResNet-18 as the backbone and 

 YOLO-like ( 12 × 6 grid cells) head stacked on top of it. In all

f our experiments, we train source- and target-domain detectors 

eparately and they will later be jointly trained with the genera- 

ors. Both detectors are trained for 30 epochs using SGD with a 

atch size of 32, a momentum of 0.9, a learning rate of 0.0 0 01

nd a decay of 0.0 0 05. Finally, when the training of both detec- 

ors is finished, they are integrated with our GAN model to rep- 

esent the CoCo loss for the generators to produce instance-aware 

mage-translation results. It is worth mentioning that, both detec- 

ors are still trained simultaneously with our GAN model, but they 

nly learn from real images and the corresponding detection la- 

els. Finally, the four discriminators, two generators and two de- 

ectors are jointly trained using the Adam optimizer [52] with a 

atch size of 2, a learning rate of 0.0 0 02, exponential decay rates 

β1 , β2 ) = (0 . 5 , 0 . 999) , epochs of 200. We set the weightings re-

ated to the multi-task loss to be λimg-obj = 1 , λcyc-obj = 2 , and

cyc-adv = 5 . 

.1. INIT dataset 

As shown in Table 2 , our results are consistently better than 

ther models, particularly for INIT and DUNIT, in a totally 6 sce- 

arios in terms of Inception Score (IS) [53] which is an important 

etric for assessing the performance of image-translation. Qualita- 

ively, in the day-to-night ( Fig. 4 ) scenario, it shows that our model

as a more balanced color contrast in terms of global-style and 

bject-style as compared to other competitors, especially to MUNIT 

nd DRIT. Then, in terms of day-to-cloudy ( Fig. 5 ) scenario, yet, it

hows that our model can display more object-preserving results 

gainst other competitors as indicated in the zoom-in bounding 

ox. 
6 
.2. GTA dataset 

Next, we evaluate our model on the synthetic dataset, GTA. 

ur model clearly surpasses Multimodal-AugGAN and only needs 

ounding box GT annotations. As shown in the 1st row of Table 3 ,

ur model outperforms competing methods in terms of nighttime 

etection accuracy. Qualitatively, as seen in Fig. 6 , it is quite evi- 

ent that our model could yield visually-plausible instance-aware 

arget-domain-looking results. 

.3. BDD100k dataset 

In order to achieve better results in the real-driving BDD100k 

ataset, we not only perform day-to-night image-translation for 

DD100k using GANs learning from GTA but also try to use both 

f them. As shown in Table 3 , our model consistently outperforms 

ther competing methods. In Fig. 7 , we could easily observe that 

ICE-GAN and MUNIT would sometimes turn off the front or the 

ear lamps of the vehicles inside images. Even though the lamps 

re turned on in some cases, the location and the color might 

e wrong. AugGAN and Multimodal AugGAN could achieve bet- 

er results considering both factors. However, even with seman- 

ic segmentation subtasking network, the appearance of nighttime 

ehicles is still not realistic enough because the style-translation 

f particular objects is not instance-aware and might be compro- 

ised by the overall style of the image. 

.4. DarkFace dataset 

Using face detection as the downstream detector in our GAN 

or performing image-translation is possible in practice. However, 

etecting tiny objects in a shallow detector to be integrated into 

ur GAN framework is very difficult. Therefore, we propose to train 

ugGAN-Det with the pedestrian labels from BDD100k dataset, 

erform D2N translation on sampled FEEDS and LTFT datasets 

hich provide face labels for later training powerful YOLOv4, and 

hen test the face detection results on the validation set of Dark- 

ace dataset. It is worth mentioning that since DarkFace dataset is 

ery dark and is significantly different from BDD100K, YOLOv4 was 

rained with the training set of DarkFace and the Day-to-Night- 

ransformed images from FEEDS and LTFT datasets. As can be seen 

n Table 4 , since MUNIT and NICE-GAN cannot darken the image 

hile keeping the persons in the translated images, involving im- 

ges transformed by either model will trail the detection accuracy 

f YOLOv4 trained only with DarkFace training set. Our AugGAN- 

et not only fulfilled the two conditions above but also achieved 
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Fig. 4. INIT Dataset (Day-to-night): A comparison of different models. From left to right - (Top) CycleGAN, UNIT and MUNIT. (Bottom) DRIT, DUNIT and Ours model, respec- 

tively. 

Fig. 5. INIT Dataset (Day-to-Cloudy): A comparison of different models. From left to right - (Top) CycleGAN, UNIT and MUNIT. (Bottom) DRIT, DUNIT and Ours model, 

respectively. 

Fig. 6. GTA-val-day: A comparison of day-to-night transformation results done by different models. 
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igher detection accuracy, which clearly shows that involving day- 

o-night-transformed images is also helpful in detecting faces in 

n extremely dark scenario. The translated images can be seen in 

igs. 8 and 9 , respectively. 

.5. Transformations of more domains 

Our model is capable of learning transformation across un- 

aired domain pairs where either of the domain could be in dif- 

erent weather conditions and times-of-the-day. A more thorough 
7 
emonstration is shown in Fig. 10 across the three public datasets 

mployed in this paper. We can easily observe that the style- 

ranslation of particular objects is instance-aware without being 

ompromised by the style of the overall image. 

.6. Object detection in real-driving scenario 

Since our model can provide more visual-compelling image- 

ranslation results, nighttime detector learning from the day-to- 

ight transformed images generated by our model could achieve 



C.-T. Lin, J.-L. Kew, C.S. Chan et al. Pattern Recognition 138 (2023) 109416 

Fig. 7. BDD100k-val-day: A comparison of day-to-night transformation results done by different models. 

Fig. 8. LTFT-day-to-night results generated by GANS learning from BDD100k. 

Fig. 9. FEEDS-day-to-night results generated by GANS learning from BDD100k. 

8
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Fig. 10. More image-translations across different domains. 

Table 4 

Detection accuracy comparison - YOLOv4 trained 

with DarkFace-train (baseline) and (LTFT + FEEDS)- 

day-to-night-transformed images generated by GANs. 

Please remind that in this setting, DarkFace-train is 

mixed with the day-to-night images in each experi- 

ment. 

Baseline NICE-GAN MUNIT AugGAN-Det 

0.191 0.179 0.175 0.205 

Table 5 

Detection accuracy comparison for the KITTI-to-Cityscape adaptation sce- 

nario. 

Methods Pedestrian Car Truck Cyclist mAP 

DT [54] 0.285 0.407 0.259 0.297 0.312 

DAF [55] 0.392 0.402 0.257 0.489 0.385 

DARL [56] 0.464 0.587 0.270 0.491 0.453 

DAOD [57] 0.473 0.591 0.283 0.496 0.461 

DUNIT [15] 0.607 0.651 0.327 0.577 0.541 

NICE-GAN [37] 0.282 0.525 0.285 0.479 0.393 

MUNIT [8] 0.482 0.572 0.271 0.510 0.459 

AugGAN-Det 0.610 0.681 0.348 0.585 0.556 

Table 6 

Different detector and generator training strategy in 

the GTA case. 

Detector setting (in generator training) AP 

Unconverged & frozen 0.501 

Converged & frozen 0.517 

Jointly-trained 0.568 

s

a

g

l  

(

4

i

r

p

4

a

j

K

i

o

t

D  

o

b

a

t

T

a

t

t

o

t

O

c

o

a

5

q

g

5

b

b

t

b

t

t

t

h

i

g

a

t

ignificantly better results in terms of nighttime vehicle detection, 

s seen in Fig. 11 . Besides, during the training process, our model 

radually learns to darken the overall image and turn on the rear 

amps of the front vehicles, as shown in the bottom row of Fig. 12

from left to right). 

.7. Face detection in extremely dark scenario 

Training with DarkFace images and day-to-night-transformed 

mages generated by our model can achieve better face detection 

esults in poor visibility situations. The face detection result com- 

arison can be seen in Fig. 13 . 
9 
.7.1. Other domain adaptation detection results 

Our model is also tested on the task of cross-dataset domain 

daptation. We follow the same experimental setup as Bhattachar- 

ee et al. [15] in the KITTI-to-Cityscape domain adaptation. i.e., 

ITTI [45] dataset is the source domain and Cityscape [46] dataset 

s the target domain. In this experiment, Faster R-CNN is trained 

n the target-domain images and then evaluated on the source- 

o-target images provided by different models including DT [54] , 

AF [55] , DARL [56] , and DAOD [57] . This way, the performance

f image-translation done by different models could be assessed 

y the detection accuracy. The detection results of translated im- 

ges can be seen in Fig. 14 . In the images transformed by MUNIT, 

he pedestrian and the car inside the red boxes are not preserved. 

herefore, they cannot be detected and leads to a lower detection 

ccuracy in Table 5 . In our proposed approach, the generator learns 

o perform image-translation while keeping objects detectable by 

he target-domain detector as much as possible. DUNIT applies an 

ff-the-shelf object detector in training GAN, which is why the de- 

ection accuracy is significantly higher than NICE-GAN and MUNIT. 

ur model outperforms other models in this task in terms of per- 

lass AP and mAP because the generator is jointly trained with the 

bject detector to learn to generate object-preserving and instance- 

ware translated images gradually. 

. Further model analysis 

In the journey of this work to pursue visually-better and 

uantitatively-beneficial results, we performed some analysis tar- 

eting better architecture and training strategies. 

.1. Detector and generator training 

At the early stage of this work, we found that the interaction 

etween the detector and the generator is very similar to the one 

etween the discriminator and the generator. i.e., both the detec- 

or and the discriminator can overpower the generator. Inspired 

y label smoothing [41] that proposed to prevent the discrimina- 

or from being overconfident, we tried to attain the balance be- 

ween the generator and the detector by controlling the detector’s 

raining convergence. We conducted three experiments to assess 

ow an object detector is involved in generator training. As seen 

n Table 6 , an unconverged and frozen detector can only guide the 

enerator to yield objects with very-limited target-domain-style 

ppearances, thus leading to lower AP. A converged and frozen de- 

ector tends to provide a non-informative back-propagation signal 
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Fig. 11. YOLOv4 (trained with BDD100k-det-val-day day-to-night-transformed images generated by GANs learning from BDD100k-seg and GTA-train) detection result com- 

parison on BDD100k-det-val-night: (a) YOLOv4 trained with images generated by NICE-GAN; (b) YOLOv4 trained with images generated by CyCADA; (c) YOLOv4 trained with 

images generated by MUNIT; (d) YOLOv4 trained with images generated by AugGAN; (e) YOLOv4 trained with images generated by Multimodal AugGAN; (f) YOLOv4 trained 

with images generated by our work. 

Fig. 12. The learning process of NICE-GAN and our model. (Left image) a daytime image from BDD100k-val-day; (top) NICE-GAN; (bottom) our work. 

Fig. 13. YOLOv4 detection results on DarkFace-val set with different settings: (a) YOLOv4 trained with DarkFace training set only; (b) YOLOv4 trained with DarkFace training 

set and (LTFT + FEEDS)-day-to-night-transformed images generated by NICE-GAN; (c) YOLOv4 trained with DarkFace training set and (LTFT + FEEDS)-day-to-night-transformed 

images generated by MUNIT; (d) YOLOv4 trained with DarkFace training set and (LTFT + FEEDS)-day-to-night-transformed images generated by AugGAN-Det. 

Fig. 14. KITTI-to-Cityscape results: (1st row) original images; (2nd row) detection results in MUNIT-transformed images (pedestrian and cars cannot be detected because they 

are not preserved during image-translation); (3rd row) detection results (green bounding boxes) of images transformed by this work. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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o the generator and simply increases its loss. When the detector 

s jointly trained with the generator, the generator continuously 

earns to generate realistic and target-domain-detector-detectable 

bjects. 

.2. Ablation study 

Our network design assumes that object detectors, through 

oCo loss, can serve as an auxiliary regularization for image-to- 

mage translation. However, object consistency loss for both image- 

ranslation phases in both cycles might still be helpful to some 

xtent in terms of detection accuracy. The FID and the detection 
10 
nalysis of our model variations is shown in Table 7 . It is ev-

dent that CoCo loss is more important than the object consis- 

ency losses, as seen in the top two rows. In contrast, a single 

etector trained by using day and night images to perform ob- 

ect consistency loss and CoCo loss can only provide inferior re- 

ults. Finally, as seen in the last row, the best results are achieved 

y regularizing the generators with daytime and night detectors. 

hat is, a daytime detector for the image-reconstruction phase in 

he forward cycle and image-translation phase in the backward cy- 

le; while a nighttime detector for the image-translation phase in 

he forward cycle and image-reconstruction phase in the backward 

ycle. 
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Fig. 15. t-SNE visualization results in GTA and BDD100k cases: Green/Red/Blue points are daytime/nighttime/day-to-night-transformed cropped vehicles, respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 7 

Ablation study of object-consistency and detector (trained with day, 

night or day + night) comparison in terms of FID and detection accu- 

racy - detectors trained with transformed images (BDD100k-det-val- 

day) generated by GANs (learning from both GTA and BDD100k) and 

tested on BDD100k-det-val-night. For FID, lower is better. 

Models FID AP 

Two detectors in image-trans phases only 0.414 0.528 

Two detectors in image-recons phases only 0.512 0.535 

Only one detector in both phases and cycles 0.451 0.525 

Two detectors in both phases and cycles 0.309 0.559 

Table 8 

Training a nighttime detector (YOLOv4) using different data: the 

testing data is GTA-val-night2. 

Training data AP 

GTA-val-day 0.455 

GTA-val-day + GTA-val-day-to-night 0.507 

GTA-val-day-to-night(GAN w/ daytime detector only) 0.491 

GTA-val-day-to-night 0.542 

GTA-val-night1 0.563 

GTA-val-day-to-night + GTA-val-night1 0.622 
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Table 9 

FID scores, FCN scores, and MOS of the GTA case: 

note that FID is estimated between GTA-val-day-to- 

night transformed images and GTA-val-night images; 

FCN models are trained by the former and testing on 

the latter; MOS is evaluated by showing observers the 

former images of different models. For FID, lower is 

better. 

GAN model FID FCN-Acc FCN-IoU 

NICE-GAN [37] 2.466 0.925 0.825 

MUNIT [8] 1.066 0.939 0.831 

AugGAN [11] 1.020 0.940 0.855 

M-AugGAN [12] 1.023 0.941 0.860 

AugGAN-Det 0.799 0.947 0.887 
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.3. Different training data for a target-domain detector 

We have conducted several experiments to know how the 

ransformed images can help train a nighttime detector, as seen 

n Table 8 . GTA-val-night dataset is split into equal-sized GTA-val- 

ight1 & GTA-val-night2. We found that using GTA-val-day alone 

chieved the lowest accuracy. When training generators of both 

omains with daytime detector only, the image-translation qual- 

ty degrades so using detectors of both domains is essential. Mix- 

ng day-to-night data with real-nighttime data achieved the high- 

st accuracy, which proves that training a nighttime detector with 

eal and synthetic data is valuable. 

.4. Additional subjective and objective evaluation 

To further objectively evaluate the quality of the generated 

ighttime images in the GTA case, we use FID [58] for analyzing 

he similarity between the day-to-night-transformed images and 

he real nighttime ones. In theory, the day-to-night-transformed 

mages are supposed to be also helpful in performing seman- 

ic segmentation for nighttime vehicles. We adopt the popular 

CN8s (VGG16-based) [59] to report the FCN scores and com- 

letely follow the protocol mentioned by other GAN models, such 
11 
s Lin et al. [12] , for a fairer comparison. How much the day-

o-night-transformed images help perform semantic segmentation 

or nighttime vehicles is also analyzed using the popular FCN8s 

VGG16-based) [59] to report the FCN scores. Finally, in order to 

now if day-to-night-transformed images generated by our model, 

ugGAN-Det, are visually better, we also conducted a subjective 

valuation of mean opinion score (MOS) to provide a visual rat- 

ng (from one to five, the higher, the better) for our method and 

ther competing ones. There are 51 random non-expert observers 

nvolved and the questions are designed to demonstrate three fac- 

ors. The first one considers the instance-aware image fidelity. i.e., 

he color, and the location of the vehicle lamps in the day-to-night 

ase. The second one is the overall style-transfer quality. The third 

ne is the level of object preservation. These three factors are in- 

egral for determining if day-to-night-transformed images are re- 

listic. As seen in Table 9 , our model achieves the lowest FID be-

ause the day-to-night-transformed vehicles are more realistic in 

erms of the nighttime-looking texture of the vehicle body, bright- 

ess of vehicles’ rear lamps, and the sharpness of vehicle’s body at 

ighttime. Our model also leads to higher FCN scores because FCN 

s trained to better understand vehicle’s nighttime appearance. In 

able 10 , the MOS comparison indicates that our work outperforms 

UNIT and NICE-GAN in terms of the fidelity of the rear lamps and 

etter object preservation. Multimodal AugGAN could achieve bet- 

er object preservation than both MUNIT and NICE-GAN, but object 

ppearances are not instance-aware enough. 

.5. t-SNE visualization 

t-SNE [60] is a non-linear technique widely used for dimension- 

lity reduction and can thus visualize high-dimensional data. This 
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Table 10 

MOS of our model and other competing methods in 

both GTA and BDD100 cases: the former learns from 

GTA only and the latter learns from BDD100k + GTA. 

GAN model GTA BDD100k 

NICE-GAN [37] 3.049 2.289 

MUNIT [8] 2.331 2.095 

Multimodal AugGAN [12] 2.422 2.810 

AugGAN-Det 3.763 3.126 
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owerful tool can find the patterns in the data by identifying ob- 

erved clusters based on the similarity of data points with multiple 

eatures. t-SNE works well in our case because it can group objects 

ith similar appearance together when they are mapped from high 

o low dimensions. Figure 15 shows the visualization results of t- 

NE on GTA and BDD100k datasets. It is evident that most of the 

ay-to-night-transformed images (blue dots) are very close to the 

eal nighttime ones (red dots). That is, our proposed method has 

uccessfully made the transformed vehicles carry the characteris- 

ics of the real nighttime ones. 

. Conclusion and future work 

In this paper, we propose CoCo loss to leverage object detec- 

ors for performing instance-aware image-translation via a GAN 

odel. We empirically demonstrate that the generator learns to 

ower the detection loss for the objects to be transformed to the 

tyle of their counterparts in the target domain. Compared to pre- 

ious models, which e.g., require pixel-level semantic segmentation 

o force the latent distribution to be object-preserving, this work 

nly needs bounding box annotations which are significantly eas- 

er to acquire. As to the instance-aware GAN models, our model, 

ugGAN-Det, internalizes global and object style-transfer without 

xplicitly aligning the instance features. Most importantly, a detec- 

or is not required at test time. Therefore, most published datasets 

or object detection become valuable, since labeled data in e.g., dif- 

erent weather conditions and times-of-the-day can be converted 

for free” for an object detector to achieve better results in a des- 

gnated scenario. The limitation of this work is that the objects in 

he image cannot be too small. Therefore, we trained the detector 

n our GAN model by the whole body of a person instead of his

ace in the DarkFace experiment. We plan to create a multimodal 

ersion of this model in the future. Therefore, a single annotation 

an be transformed in an instance-aware manner to multiple im- 

ges in the target domain to further improve object detectors’ ac- 

uracy. 
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