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Abstract In this paper, we investigate orthogonal planar
search (OPS) for coronary artery centerline extraction to
assist in coronary artery diseases diagnosis. The search mech-
anism exploits a data-driven algorithm to extract the center-
line. Firstly, the best representation of vessel cross section on
orthogonal planar is determined. Then, the center of gravity
from the crosssection is computed as centerline point iter-
atively. Branching detection and termination are invoked in
this proposed method. We demonstrate the results quantita-
tively and qualitatively. In addition, we benchmark OPS with
three state-of-the-art methods and illustrate the comparison
results in radar chart (also known as spider chart). Finally,
we discuss limitations of OPS and future works.

Keywords Computed tomography angiography (CTA) ·
Centerline extraction · Orthogonal

1 Introduction

Over the past years, computed tomography angiography
(CTA) has been widely studied for coronary artery diseases
(CAD) diagnosis due to its non-invasive imaging procedure
and high-quality output images. In CAD diagnosis, the CTA
visualization techniques (i.e., volume rendering (VR), max-
imum intensity projections (MIP), multiplanar reformation
(MPR) and curved planar reformation (CPR)) are employed
to assist in lumen segmentation, stenosis grading and clas-
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sification. As a result, coronary artery centerline extraction
from CTA is prerequisite for these visualization techniques.

Thus, a reliable coronary artery centerline becomes cru-
cial. Unfortunately, this clinical routine (i.e., extraction of
centerline) still heavily dependent on time-consuming man-
ual operations. In this work, an automatic coronary artery
centerline extraction is proposed which aims to resolve dis-
advantages of manual operation by: (1) speed up and ease
the reviewing tasks, (2) reduce manual interaction on huge
amount of volumetric dataset and (3) decrease inter-operator
variability.

Ideally, coronary artery centerline tracking algorithm
extracts centerline points from oblique planes, which is
orthonormal to the centerline. Nevertheless, tensor pertur-
bation occurred due to (1) numerical errors in its modeling
and estimation; and (2) inaccurate interpolation of tiny vessel
cross section due to partial volume effect, causing inaccurate
centerline extracted. Tang and Chan [1] proposed a neighbor-
hood search feedback algorithm for coronary artery center-
line tracking to reduce tracking error propagation. However,
the algorithm was immature (i.e., under-track the centerline)
to cope with vessel line-like profile and branching problem.
Hence, we reckon that extraction of coronary artery from
axis source images is insufficient due to vessel’s curvature
as shown in Fig. 1. As a summary, we identify two main
problems:

1. Parts of vessel travel transversely causing insufficient
centerline extraction from axis source images.

2. Tensor perturbation and partial volume effect causing
inaccurate interpolation of tiny cross section.

As a consequence of these two problems, we propose
orthogonal planar search (OPS) for coronary artery center-
line extraction from CTA. We assume that orthogonal planars
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Fig. 1 Parts of vessels travel transversely causing insufficient center-
line extraction from axis source images

(i.e., transverse, coronal and sagittal) are sufficient to extract
vessels centerline. Due to the complexity of tubular structure,
the algorithm required to search for the best representation
of vessel cross section from these three orthogonal planars
locally. A metric to select the best representation of cross sec-
tion is required to accomplish OPS (see Sect. 3.3.2). Besides,
curvature is an important property to extract vessels. This
led us to propose our tracking direction estimation module
in order to enhance OPS mechanism (see Sect. 3.4).

For OPS evaluation, we benchmark our proposed method
with the three state-of-the-art methods (i.e., Rcadia [2],
VRVis [3] and LUMC/Medis [4]) who participated in the
centerline extraction challenge of the Rotterdam Coronary
Artery Algorithm Evaluation Framework.

This paper is organized as follows: in Sect. 2, we discuss
related works in this area and our preliminary experiment.
In Sect. 3, we describe the proposed method in detail. In
Sect. 4, we show our experimental results and comparison
results with state-of-the-art methods. Finally, in Sect. 5, we
conclude this paper with discussion and future work.

2 Related works

Coronary artery centerline extraction is challenging due to:
(1) image quality is affected by many factors such as spa-
tial and temporal resolution, artefacts due to cardiac motion,
(2) high variability of size and curvature, also appearance

perturbed by calcifications, stenoses and stents and (3) close
to adjacent organs [5].

There are many existing coronary artery centerline extrac-
tion algorithms proposed in [5,6] which aim to tackle the
aforementioned challenges. Principally, coronary artery cen-
terline extractions are classified into skeleton-based and
tracking-based approaches. Skeleton-based approach per-
forms segmentation follow by morphology operations to
obtain 3D centerline. Bouraoui et al. [7] anticipated Hit-or-
Miss Opening with 13 structure elements to extract coronary
artery. This morphology operator is performed on gray-level
images instead of binary images. Chen and Molloi [8] pro-
posed an automatic 3D vascular tree construction using 3D
morphology operators. The algorithm begins by stacking the
CT slices, and then 3D image segmentation is performed fol-
low by 3D thinning to extract the centerline. In order to filter
noises (e.g., cycle, stick, non-unit width, spurs etc.) from the
thinning process and construct tree concurrently, a simple
3D skeleton pruning and tree construction algorithm is pro-
posed. Xu et al. [9] claimed that the accuracy of coronary
artery stenosis detection and quantification is improved after
the development of skeletal pruning algorithm on medial axis
of arterial tree. On the other hand, tracking-based approach
traces vessel centerline with local operators within proximity
and track it. For instance, Isola et al. [10] determined relative
motion-vector fields (MVF) from phase to phase based on
corresponding centerline positions. The full region of inter-
est is extracted from dense MVF by thin plate spline interpo-
lation. Mueller and Maeder [11] used fast-marching minimal
paths to extract coronary artery centerline. This is performed
after a novel vessel enhancement step in order to avoid the
tendency to visit unnecessary pixels.

Skeleton-based approach is claimed to have high-precision
approach based on phantom studies [6]. Nevertheless, due to
partial volume effect, there are uncertain boundary points
problem. Hence, our approach focuses on tracking-based
instead of skeleton-based approach.

A standard coronary artery centerline extraction algorithm
evaluation framework is proposed by Schaap et al. [12],
which is advantageous for comparison of new developed
method with state-of-the-art methods as the datasets are pub-
licly provided for benchmarking. Thirteen methods are eval-
uated in [12]. Majority of the 13 methods proposed mini-
mum cost path as their extraction algorithm [13–23]. Mini-
mum cost path bounds the centerline extraction problem in
terms of cost function minimization. A cost function based
on proximity likelihood similarity measurement is iteratively
minimized. The drawbacks from minimum cost path include
possibility to (1) induce exploration of large search space,
(2) erroneous shortcut path, (3) defined start and end points
are required in order to relax the search mechanism and etc.

The rest of the methods propose model-based or region-
growing algorithm to extract centerline. Hoyos et al. [24]
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proposed an elastic model to estimate location of poten-
tial centerline points. The points iteratively evolve under
the action of external force, and internal force untill sta-
bility is achieved. Zambal et al. [3] designed two types of
cylindrical models; one used to locate seed points of coro-
nary artery and another one used to delineate the vessel.
One of the disadvantages from model-based approaches is
unfit model to thin and elongated vessel surface. For region-
growing algorithm, Kitslaar et al. [25] investigated a combi-
nation of fast-marching level set method and backtracking
algorithm to obtain a preliminary tree. Then, lumen seg-
mentation is accomplished by delineation of lumen from
curved multiplanar reformatted (CMPR) image. In addition,
a more precise centerline is extracted from CMPR as well. A
work by Yang et al. [4] employed wave propagation (region-
growing algorithm) for branch searching on the ’initial tree’
(i.e., unconnected branches). Region-growing algorithm fall
in the category of greedy algorithm which can be compu-
tationally expensive. Thus, we intend to propose a method
which avoided the aforementioned drawbacks.

Recently, centerline extraction algorithm evolves into 4D
vessel tracking (e.g., [26,27]). Mohan et al. [26] proposed
a level set active contour method to extract centerline. They
obtain the intensity measurements between the inner disk and
the outer annular region by utilize 2D disks directed along
the centerline. However, the method is sensitive to initializa-
tion, where the seed point must be inside vascular structure
which a small tube can be initialized, and it is computa-
tionally expensive. Cetin et al. [27] model vessel with 4D
curves based on vessel tractography. It is an intensity-based
tensor fitting algorithm. The algorithm calculates rank 2 ten-
sor using directional cylinders to trace the path with vessel
lumen thickness estimation. In this algorithm, postprocess-
ing is invoked to centralize the centerline due to the vessel’s
abnormal torsion.

3 Methods

We explore a preliminary experiment to support our afore-
mentioned assumption whereby the orthogonal planars (axial,
coronal and sagittal) are sufficient for finding the best rep-
resentation of cross section along the tubular structure. In
particular, we retrieve the orthogonal planars of reference
standard centerline based on the principal axis of unit tangent
from two consecutive points. We visualize the corresponding
planar to validate the best representation of cross sections.
Figure 2 clearly shows that the orthogonal planars along the
reference standard centerline and each planar contains the
best representation of vessels’ cross sections.

We define a coronary artery centerline as points extracted
from the best representation of cross section on orthogo-
nal planars. Given a volumetric data V, mutually orthogonal

Fig. 2 Best representation of orthogonal planars along reference stan-
dard CTA

planar I�α ∈ V where �α is unit vector of orthogonal planar in
R

3 such that I(1,0,0) → Sagittal, I(0,1,0) → Coronal, I(0,0,1)
→ Transverse. The planars are explored to extract center-
line points, c(u) of centerline, C(u); u ∈ [0, L] where L is
the length of the centerline. c(u) are extracted by analyzing
circularity, ω of ∀cc (connected vessels components) from
planar subregions W�α ∈ R

2. Planar subregions (W�α) are
cropped sequentially for processing in order to reduce the
computational time.

3.1 Subregions cropping

W�α centered by ci−1(u) are cropped prior to image enhance-
ment and define as:

W�α ∈
{([

Rmin
�α , Rmax

�α
]
, ψ�α

)
∈ R

2 × R
+}

(1)

Rmin
�α = ci−1(u) · (1 − �α)− w (2)

Rmax
�α = ci−1(u) · (1 − �α)+ w (3)

where w is a defined radii vector in R
2 of W�α . ψ�α denotes

the slice index of orthogonal planar in �α. We present two
calculations: one for tracking initialization, another for vessel
segment tracking, which will be explained in Sects. 3.3 and
3.4.

3.2 Preprocessing

Herein, we enhance image quality and delineate the con-
nected vessels components (cc) for subsequent steps. Con-
ventionally, we apply image smooth filter to improve data
points signal such that the outliers are reduced. Standard
Gaussian smooth filter G(x, y) ∗ W�α is employed, where
G(x, y) indicates a 2D Gaussian kernel. Subsequently, a
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piecewise function is created to discriminate cc from back-
ground, i.e., delineate vessel regions from non-blood pool
regions. σ , sigma of Gaussian smooth filter controls the
blurriness of the image and Tσ is a cut-off variable in the
piecewise function which separates vessel regions from back-
ground. Tσ is defined empirically. Our algorithm exploits
vessels geometric properties in tracking algorithm. Analysis
on each cc is required. To do this, component connected label
technique is performed to label each cc.

3.3 OPS in tracking initialization

Generally, a start point inside vessel (i.e., proximal of vessel)
is defined for each vessel tree tracking, i.e., right coronary
artery (RCA) and left coronary artery (LCA). Nevertheless,
this prior information is insufficient for vessel tree tracking
due to the complex curvature. Thus, tracking initialization is
proposed in order to extract more points to lead the tracking.
We emphasize that the best representation of vessel cross
section is not on axial source images but is on sagittal or
coronal images . This is due to the fact that proximal segments
of coronary artery are travel transversely (see Fig. 1).

There are two important factors considered here: (1)
evolution direction and (2) feature value.

3.3.1 Evolution direction

Evolution direction of 3D curve tracking is important to
indicate current and next position of the curve. However,
a defined start point is inefficient to lead the evolution. Thus,
all potential evolution directions are investigated to obtain
appropriate initial direction using OPS. It can be modeled by
combining three orthogonal planars images with voxel-based
stepping distance. In particular, two tuple of W�α ,

∏2
j=0 W�αθj

with stepping distance one voxel are extracted using Eq. 1
sequentially for preprocessing where the first tuple is with
θ = π

2 and second tuple with θ = 3π
2 . We calculate ψ�α from

Eq. 1 as:

ψ�αθj = c0(u) · �α j + k sin (θ) (4)

where j is the index of three orthogonal planars. k increases
by one in every iteration.

3.3.2 Feature value

We analyze the local geometric property of vascular struc-
ture where cross sections of vascular structure are always
circular. Circularity, ω of connected vessels component, cc
is considered as the feature value for tracking initialization
and defined as the ratio of cross section perimeter, P to the
perimeter of the circle with same area, i.e.,

ωb = Pb

2
√
π · Ab

(5)

P can be estimated by any edge detection algorithm. Herein,
we use morphology operators to achieve this prupose. A
denotes the area of cross section, i.e., pixels count of cross
sections and b is index of cc. In our work, we empirically
define 0.8≤ ωb ≤1.0 as sufficient circularity of vessel cross
sections (i.e., the best representation of vessels cross section).
All cc from preprocessing are validated and tracking initial-
ization point is extracted from corresponding cross section.

3.4 OPS in vessel segment tracking

In order to perform CAD diagnosis from the CTA, experts are
required to study CTA dataset by rotating orthogonal planar
and identify the coronary artery conditions. This is a tedious
process which may take up to few hours. Thus, an automated
system is more essential for the experts. In order to automate
this process, the algorithm must able to transform in between
transverse, coronal and sagittal. According to the preliminary
experiment (see Fig. 2), we propose OPS, by utilizing the
orthogonal planars from volume data for processing. Sequen-
tial decision is invoked to optimize the algorithm. Instead of
generating two tuples of orthogonal planars as in Sect. 3.3, we
now determine current planar, �αi by exploiting the continu-
ity of curvature to predict next potential orthogonal planar.
From tracking initialization in Sect. 3.3, two initial points
inside vessels are extracted. Thus, �αi is predictable based on

angle, φ which in between unit tangent, �τ = �cn
0 (u)ci−1(u)

|cn
0 (u)ci−1(u)|

and �β where �β⊥ �αi (see left figure in Fig. 3).
cn

0(u) indicates the initial points of each linear segment,
n denotes the index of segments. Note that cn

0(u) is updated
when the orthogonal planar changed. As consider the con-
tinuity of curvature, no sharp turning point of the curve is
observed. When φ ≥ Tφ , turning point is identified and �αi is
determined by selecting the principal axis of �τ (see Eq. 7 ).
Next, we crop W �αi from planar �αi by Eq. 1 and calculate ψi

using below equation:

Fig. 3 Left angle φ in between unit tangent of centerline (�τ ) and unit
vector orthogonal to planar ( �β). �cn

0 (u) is updated when orthogonal planar
changed. Right branching detection

123

Author's personal copy



SIViP

Fig. 4 TPM,TPR,FPM and FNR when a the evaluated centerline is elongated more than the reference standard and b reference standard elongated
more than the evaluated centerline

ψi = ci−1(u) · �αi + max(�τ)
|max(�τ)| (6)

where

�αi =

⎧⎪⎨
⎪⎩

(1, 0, 0), if max(�τ) is x axis

(0, 1, 0), if max(�τ) is y axis

(0, 0, 1), if max(�τ) is z axis.

(7)

Subsequently, preprocessing (see Sect. 3.2) is performed on
determined orthogonal planar. Center of gravity, CoG from
the corresponding cc is extracted as current centerline point,
ci (u). However, false positive may occurred and the tracking
leaks to other adjacent structure. Thus, we extract alternative
orthogonal planars at ci−1(u) if no cc from orthogonal planar
�αi to resolve the problems. The alternative planars �αa consist
of other two orthogonal planars. ∀cc from planars �αa are
validated sequentially to reduce computational power. We
implement a multiscale vessel segment tracking where vessel
segment tracking (in Sect. 3.4) is performed iteratively with
various σ in preprocessing (see Sect. 3.2) to obtain the best
representation of cross section.

3.5 Branching detection

In order to handle the vessels branching problem, we analyze
∀cc to detect root of branch, PR and initial of branch, PI . In
particular, we detect PI where cc with μ ≥ 1.8; μ is ratio of
width and height of cc, we compute at least two points from
cc and mark it. The PR is determined where cci−1 with single
point extracted and cci with more than one point extracted
(see right figure in Fig. 3). Subsequently, each pair of PR

and PI is assigned as input to vessel segment tracking (in
Sect. 3.4).

4 Experimental results and discussion

We evaluate the performance of proposed method on 18
datasets which publicly available for MICCAI segmentation

challenge 2012, “3D Segmentation In The Clinic: A Grand
Challenge”. The CTA dataset are acquired with average res-
olution 0.38 mm × 0.38 mm × 0.37 mm. Prior to the evalu-
ation, correspondence between the points of reference stan-
dard and the points from each method is identified. Subse-
quently, true positive, false positive and false negative are
labeled on the points based on correspondence points (see
Fig. 4a, b).

Evaluation 1: A point of the reference standard is labeled
as true positive, TPR if the Euclidean distance to at least one
of the connected points on the evaluated centerline is less
than defined distance, d and false negative, FNR otherwise.

Evaluation 2: A point of the evaluated centerline is labeled
as true positive, TPM if the Euclidean distance from at least
one of the connected points on the reference standard CTA
is less than d and false positive, FPM otherwise.

Here, d is equal to 0.75 mm because we only consider
the vessels which are assumed to be clinically relevant, i.e.,
vessels diameter ≈1.5 mm or larger according to [28]. Two
measures were used in our evaluations:

(1) Overlaping (Vc) represents the ability to track the com-
plete vessel annotated from CTA with a measure similar
to Dice coefficient and defined as

Vc = TPM + TPR

TPM + TPR + FPM + FPR (8)

(2) Average distance (Dc) indicates the average distance
of all the connections between the CTA reference stan-
dard and the evaluated centerline given that the connec-
tions have Euclidean distance smaller than d.

We compare our proposed method and centerlines extracted
by the results from the three teams (i.e., Rcadia team [2],
VRVis team [3] and LUMC/Medis team [4]) with CTA ref-
erence standard. Table 1 shows the comparison results of Vc

and Dc. According to Table 1, our proposed method (OPS)
achieved an average 80 % in Vc and an average 0.42 mm in
Dc. Figure 5 shows some examples of the superimposed
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Table 1 Comparison results for Vc and Dc

Methods Vc Dc

RCA LCA RCA LCA

Min. (%) Max. (%) Avg. (%) Min. (%) Max. (%) Avg. (%) Min. (mm) Max. (mm) Avg. (mm) Min. (mm) Max. (mm) Avg. (mm)

Rcadia team [2] 55.2 98.9 91.6 71.0 98.3 90.6 0.28 0.40 0.34 0.30 0.39 0.34

VRVis team [3] 72.7 97.8 90.7 85.1 94.9 92.0 0.30 0.44 0.35 0.29 0.40 0.33

LUMC/Medis
team [4]

49.5 95.9 86.0 74.6 95.1 87.4 0.32 0.51 0.40 0.29 0.44 0.37

OPS 44.6 90.9 79.5 59.8 93.2 80.5 0.36 0.52 0.42 0.34 0.54 0.41

Fig. 5 Superimpose of evaluated centerline (from our proposed OPS) in white and reference standard in black from three dataset

images of the results from our proposed method (in white
dots) and reference standard CTA (in black lines). Observe
that subimages from Fig. 5, generally the results are accept-
able. Unfortunately, some noise occurred or centerline track-
ing failed mainly at the end of vessels. The reasons of poor
accuracy from OPS compare to the state-of-the-art methods
are:

• The tiny connected vessel component (cc) vanish dur-
ing preprocessing step, especially at distal of vessel and
branches.

• Improper branching detection rules (see Sect. 3.5).

However, herein we proposed a new strategy where cen-
terline tracking approach is based on an orthogonal planar
search mechanism.

4.1 Comparison with the state-of-the-art methods

We compare the functionality of OPS with three state-of-the-
art methods, the selection of relevant performance indicators
is crucially important to provide informative comparison, and
the indicators must be measurable features such that rank-
ing can be assigned to the comparators. Thus, we select the

following indicators in order to highlight certain beneficial
features of our OPS:

1. Simplicity—estimate based on the complexity of each
stage in the algorithm.

2. Flexibility—consider number of models invoked, super-
vised or unsupervised algorithm, amount of interaction,
e.g., number of start points or end points required, etc.

3. Robustness—based on the amount of undetected vessels
compare to reference CTA.

4. Accuracy—the average overlapping (Vc) from extracted
centerline and reference CTA, see Table 1.

5. Erroneous—the average distance (Dc) between extracted
centerline and reference CTA, see Table 1.

Table 2 summarizes the comparison of OPS with three com-
parators based on the indicators with ranking. Figure 6
demonstrates the comparison ranking in spider chart to pro-
vide a better understanding. As highlighted here, the Accu-
racy and Erroneous are the results extracted from Table 1
where the OPS underperformed when compared to other
comparators. Despite these, we discuss other features which
reveal the strength of OPS. Notice that our proposed method
ranked first in Simplicity and Flexibility. In particular, our
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Table 2 Comparison of OPS with state-of-the-art methods

Methods Comparison/ranking

Simplicity Flexibility Robustness Accuracy (mm) Erroneous (%)

Rcadia [2] Obtain binary image.
Get distance map. Add
identified end points to
the graph. Centerline
backtracking from
identified end points
untill root

2 End points are
identified prior
to vessel
tracking

2 RCA and LCA
are extracted
from all dataset

1 0.337 1 92.1 1

VRVis [3] Estimate vesselness.
Approximate
direction. Tracking
based on direction.
Apply
Depth-first-search to
explore branching

3 Two types of
models are
designed for
algorithm

4 3 RCAs
undetected
from all dataset

4 0.342 2 91.4 2

LUMC/Medis [4] Perform multiscale
vesselness. Extract
initial tree by
component connected
labeling and
skeletonization. Use
wave propagation in
branch search. Refine
centerline by
straightened MPR

4 Supervised wave
propagation

3 1 RCA
undetected
from all dataset

2 0.39 3 86.7 3

OPS Perform preprocessing
on cropped image.
Obtain connected
vessel components.
OPS for vessel
initialization. OPS for
vessel segments
tracking

1 Non-model and
unsupervised
method

1 2 LCA
undetected
from all dataset

3 0.42 4 80.0 4

Fig. 6 Spider chart of comparison between OPS with state-of-the-art
methods

proposed method freely uses advanced mathematical algo-
rithms to solve the problems based on logical theory without
sophisticated processes. In fact, this support the results from
Table 1 in which OPS slightly underperformed compared to
others.

5 Conclusion and future works

In this work, we investigated the performance of OPS based
on our earlier assumption (in Fig. 2). For evaluation, we
benchmark OPS with three groups of centerline algorithm,
which provide promising results. Notice that OPS performed
Vc with variance in between 6.7 and 11.4 % and Dc with vari-
ance in between 0.03 and 0.08 mm compare with the three
teams. It can been seen in Fig. 5 that OPS tracks the centerline
quite well at the beginning but noise occurred at the end of the
centerline. Nevertheless, our proposed method can be repli-
cated easily due to its simplicity and flexibility (see Table 2;
Fig. 6). In conclusion, while OPS has its limitations, but it
is a new strategy for 3D centerline tracking from volumetric
data.

In future works, we target to resolve the two main limita-
tions aforementioned (see Sect. 4). First, we plan to integrate
multiscale preprocessing to enhance the connected vessel
components. Second, we will investigate a robust branching
detection algorithm to the extract entire vessel tree.
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