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GrCS: Granular Computing-Based
Crowd Segmentation
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Abstract—Crowd segmentation is important in serving as the
basis for a wide range of crowd analysis tasks such as density
estimation and behavior understanding. However, due to interoc-
clusions, perspective distortion, clutter background, and random
crowd distribution, localizing crowd segments is technically a
very challenging task. This paper proposes a novel crowd seg-
mentation framework-based on granular computing (GrCS) to
enable the problem of crowd segmentation to be conceptualized at
different levels of granularity, and to map problems into compu-
tationally tractable subproblems. It shows that by exploiting the
correlation among pixel granules, we are able to aggregate struc-
turally similar pixels into meaningful atomic structure granules.
This is useful in outlining natural boundaries between crowd and
background (i.e., noncrowd) regions. From the structure gran-
ules, we infer the crowd and background regions by granular
information classification. GrCS is scene-independent and can
be applied effectively to crowd scenes with a variety of physical
layout and crowdedness. Extensive experiments have been con-
ducted on hundreds of real and synthetic crowd scenes. The
results demonstrate that by exploiting the correlation among
granules, we can outline the natural boundaries of structurally
similar crowd and background regions necessary for crowd
segmentation.

Index Terms—Crowd analysis, crowd segmentation, granular
computing (GrC).

I. INTRODUCTION

V ISUAL crowd surveillance at large public events such
as concerts, parades, and rallies are common in cities

worldwide. The mere existence of crowd has the prospect of
progressing into a hazardous scene, for instance, the recent
stampede in the Shanghai 2014 New Year’s Eve revelry which
claimed 36 innocent lives.1 Alarmingly, with rapid urbaniza-
tion around the world, the formation of crowd by chance is
becoming a norm, e.g., crowds in train stations during rush
hour. Consequently, crowd analysis has emerged as a crucial
focus in visual surveillance for a proactive crowd manage-
ment to anticipate disasters and provide support in good time.
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Fig. 1. (a) Crowd images with large variations in context of crowd, crowd-
edness, illumination conditions, background appearance, and physical layout
of environment. (b) Left: crowd image. Right: person detection result using
deformable part model [1]. The blue bounding boxes signify the detections
result. False positive and fail detections are evident in the image.

Generally in crowd analysis, crowd segmentation serves as one
of the fundamental steps for further analysis, such as crowd
density estimation [2], crowd behavior analysis [3], and person
tracking in crowd [4]. This is also stated in [5] and [6] that
the localization of crowd segments is required prior to visual
tasks such as tracking or behavior understanding.

As illustrated in Fig. 1(a), we show that crowd segmentation
is a challenging task in computer vision due to the following.

1) Context Variations of Crowd: Crowd across all scenes
varies drastically because of different crowdedness, illu-
mination conditions, interocclusions and variations of
clothing and poses. At the same time, perspective dis-
tortions due to camera orientation and position implicate
changes of scales of individuals within a crowd.

2) Cluttered Background in a Crowded Scene: In all these
images, it is observed that the background (noncrowd)
regions (i.e., trees, grasses, and buildings) are clut-
tered in such a way that they resemble crowd region,
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Fig. 2. GrCS. Left: dense crowd scene image. Middle: image segmented into structurally similar atomic clusters (structure granules), shown as regions within
yellow outline. Perimeters of crowd and background are distinctively separated. Right: crowd and background regions segmentation achieved via classification
of structure granules. A vehicle is outlined and classified as background region (shown as red overlay). Best viewed in color.

where finding a good separation between crowd and
background regions is a daunting task.

3) Unconstrained Physical Layout of the Environment: The
formation of crowd across different scenes is inherently
dependent on constraints imposed by the environmental
layout.

Due to the aforementioned issues, current crowd segmenta-
tion methods that detect each person in crowd are still in their
infancy stage. This is an ongoing research problem [5]. We
show an example in Fig. 1(b) of a dense crowd scene where
individuals in crowd are severely interoccluded and mostly
cannot be detected. Hence, other methods [2], [7]–[9] infer
crowd segments by learning the textures of crowd scenes either
using regular pixel-grid or overlapping multiscale pixel-grid
(i.e., numerous range of neighboring pixels) at each pixel. In
spite of the promising results, the use of pixel-grid imposes
some constraints on inferring crowd segments. In the former,
crowd images are divided into regular pixel grids where an
optimized boundary adherence of crowd segments across dif-
ferent scene is difficult to achieve. In the latter, an antecedent
version of the regular pixel-grid, namely, multiscale pixel grid
is proposed to cope with crowd variation across different
scenes. Since it is leveraging on its antecedent, conformation
to varying crowd segments remains unresolved. With a smaller
pixel-grid, localization accuracy is better with less probabil-
ity of patch consisting both crowd and background regions;
whereas a larger pixel-grid covers wider regions for analysis
of structure [6], [7].

In this paper, we strive to exploit the correlation among
image granules at different levels of granularity with the hope
that granulation can alleviate the aforementioned constraints.
The dichotomy articulated by Moravec [10] between humans
and machines regarding the easiness and complexity in solving
different problems remains valid today. Specifically, machines
perform poorly in tasks that are seemingly effortless and natu-
ral for humans (i.e., recognizing crowd regions), but can easily
solve problems that humans find challenging (i.e., numer-
ical computation). One key advantage of the human mind
has over a machine in cognition is the ability to segment
visual information into meaningful units of analysis effort-
lessly [11]. More remarkably, this is achieved in vivid detail;
disregarding the orientation, color intensity, and deformation
present. We seek to transfer this structured problem solving
ability of human cognition into crowd segmentation system,
with the aim of alleviating the complexity to infer crowd seg-
ments. Interestingly, granular computing (GrC), an emerging

computing paradigm of information processing [12], simu-
lates human cognitive process by enabling abstraction on the
essential details at different granularities. That is, correlations
among granules are explored to solve various research prob-
lems in computer. So unlike conventional approaches [7], [9],
the concept of GrC is incorporated in our approach in the form
of granules, thereby, honoring the correlations of structures in
crowd scenes from pixel level to crowd and background level.
This is to mitigate the effects of the aforementioned issues
(i.e., context variations of crowd, cluttered background, and
unconstrained physical layout of the environment) for an effec-
tive crowd segmentation. The utilization of granules obviates
the difficulty to segregate individuals in crowd due to con-
text variations of crowd by enabling inference of crowd and
background regions based on local structures. To circumvent
the effects of cluttered background and unconstrained physical
layout of the environment, we believe the key is to study the
correlations among granules to represent structurally similar
regions in crowd scene images.

The notion of simplifying an image scene into struc-
turally meaningful atomic regions (i.e., granules) is generally
unprecedented in the existing crowd segmentation studies. It
is important to have granulation that is able to adapt in differ-
ent crowd structures in scenes due to varying crowdedness,
perspective distortion, severe interocclusion, and cluttered
background for a better crowd segmentation. As an exam-
ple, Fig. 2 illustrates a crowd scene with severe interocclusion
between individuals and the scale of individuals vary drasti-
cally due to the perspective and position of camera. Even so
humans are able to distinguish the vehicle within the crowd
with ease. Similarly, using the proposed method, it is observed
in Fig. 2 (middle) that each granule (i.e., regions within the
yellow outline) encompasses only a single context (i.e., crowd
or background). This serves as a meaningful primitive region
to infer the corresponding context [as shown in Fig. 2 (right)].
Accordingly, the vehicle (red overlay) surrounded by a swarm
of crowd (green overlay) is effectively singled out despite
severe occlusion and highly textured scene. In addition, crowd
regions segmentation is illumination invariant.

The contributions of this paper are summarized into three
main aspects.

1) GrC-Based Crowd Segmentation: We introduce a novel
crowd segmentation framework using the concept and
principles of GrC. GrC is incorporated in this paper to
conceptualize crowd segmentation problems on differ-
ent granularity similar to human cognition in problem
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solving, with the intention of mapping it into computa-
tionally tractable subproblems.

2) Adaptive Crowd Scene Granulation: Contrary to regular-
grid representation, we study the correlation among
granules to represent structurally similar regions in
crowd scene images to infer the crowd and background
regions. This is required because occasionally structures
of background in a scene image resemble crowd regions,
which lead to vague outline between the crowd and
the background. The constructed granules are scene-
independent, conforming to the boundaries of crowd
segments.

3) Dataset With Ground Truth Annotations: In order to
facilitate this paper, over a hundred real crowd scenes
are carefully annotated at pixel-level (i.e., each pixel
is assigned a class label), with careful labeling around
complex boundaries of crowd and background to pro-
vide precise boundaries and localization information.
The dataset and ground truth shall be made public to
support future crowd segmentation analysis.

The rest of the paper is organized as follows. In Section II,
we provide literature relevant to this paper in crowd segmen-
tation. Section III describes the proposed framework of crowd
segmentation by modeling crowd scenes with GrC. The exper-
imental results are presented and discussed in Section IV,
followed by the possible extensions of this paper and the
conclusion in Section V.

II. RELATED WORK

Existing work on dense crowd analysis tends to exploit
the collective coordination of crowd by analyzing crowd
through analogies with studies in fluid dynamic [13]–[15]
or treating a crowd as a collective entity [4], [16]–[19]. A
number of approaches have been proposed for crowd segmen-
tation [20], [21]. These studies lean toward analyzing dynamic
crowd segmentation for crowd flow segmentation [14], [22],
crowd behavior understanding [3], person tracking [4], [23],
anomaly segmentation [18], [24], and crowd counting [25].
Crowd is generally studied with emphasis given on the evo-
lution of its motions in an environment. Commonly, the
approaches perform background subtraction [26], [27] or esti-
mate collective crowd motion along temporal axis [4], [14] to
identify the crowd segments. Such approaches are suscepti-
ble to false segmentation in cluttered environment with other
moving entities (e.g., moving vehicles and waving trees), as
well as limited to localizing crowd with variations in collec-
tive motion. Observations by Helbing et al. [28] highlighted
that stationary crowd (e.g., spectators of a speech) implicitly
influenced the motion flow of dynamic crowd, where crowd
maneuver around stationary crowd to avoid collisions. Thus,
it is of equal importance to detect stationary crowd segments
for a complete crowd surveillance system. In this paper, we
use spatial cues that are generally available in dynamic and
stationary crowd for segmentation.

There is another branch of crowd segmentation research that
utilizes the collectiveness of crowd as well. It exploits the
texture patterns of collective crowd regions to detect crowd,

regardless of the motion variations. Due to severe interoc-
clusions and perspective distortion in dense crowd scene [as
illustrated in Fig. 1(b)], appearance-based approaches which
include head and shoulder segmentation are not feasible [2].
To alleviate the need of person detection in a crowd, imagery
of crowd scenes is partitioned into regular pixel-grid with the
purpose of achieving local texture consistency and is treated as
a texture analysis problem. A study by [29] shows that crowd
regions carry strong cue of texture variations. Arandjelovic [7]
proposed an image-based crowd segmentation method using
low-level local feature from single crowd image. Each pixel
response is defined using multiscale pixel-grid, where the com-
putation of the probability of a pixel-grid being a crowd
region is based on a predefined average number of SIFT
word segmentation per image area. Using similar approach,
Idrees et al. [2] partition crowd scene into pixel-grid to con-
struct a confidence map of crowd regions. In another study,
Fagette et al. [9] performed crowd segmentation by retriev-
ing multiscale pixel-grid texture features from crowd scene.
Binary classification is conducted to infer crowd regions in
image. Since these methods use regular pixel-grid, the repre-
sentation is not adaptive to the random distribution of crowd
perimeters and extent of crowdedness in real-world scene.
Also, it is unclear how well they can be generalized to arbi-
trary crowd scenes. The number of layers in multiscale pixel
grid is scene-dependent; it has to be empirically defined for
each public crowd scene to optimize adherence to the arbitrary
crowd distribution. In contrast to the aforementioned studies,
we propose using the concept and principles of GrC to concep-
tualize crowd segmentation problem on different granularity to
explore the affinity of structures in crowd scenes. The corre-
lations of structures are utilized to define explicitly atomic
regions with outlines that conform to the arbitrary perime-
ter between crowd and background regions. This method can
be well generalized into real-world crowd scenes with varying
geometric structures of environment and crowdedness. In addi-
tion, regions of crowd with different scales of individuals due
to varying camera positions are segregated into meaningful
structurally coherent regions.

Although not explicitly for the purpose of crowd segmen-
tation, work that uses the human-centricity of GrC for image
context understanding includes [30] and [31]. Pal et al. [30]
applied GrC together with rough sets to perform grayscale
image segmentation. Their method defines nonoverlapping
pixel-grid of different sizes as granules to quantify the object-
background regions in images. Rizzi and Del Vescovo [31]
proposed to decompose each image into segments (i.e., gran-
ules) and map the correlation among image segments for
image classification. The method performs abstractions to cope
with a wide set of problem instances of image classification.
In this paper, we propose to transfer the concept of GrC
that is able to simulate human cognitive process to explore
the correlation of structures from pixel level in crowd scenes
specifically to infer crowd and background segments. The use
of this structured problem-solving method is to alleviate the
difficulty of defining the natural boundaries between crowd
and background due to varying crowdedness, perspective
distortion, severe interocclusion, and cluttered background.
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Fig. 3. GrCS framework. An illustration of the key steps and the different levels of granularity of image in granular computing-based crowd segmentation.

III. PROPOSED FRAMEWORK

The key steps of GrC-based crowd segmentation (GrCS)
framework are illustrated in Fig. 3, where granules are the
basic elements and each level represents different levels of
granularity. This is to simulate the ability of humans to concep-
tualize at different granularity levels with the intention of map-
ping problems into computationally tractable subproblems.

In our context, a dense crowd image, I = [υυυps] ∈ R
N×S,

where N is the number of pixels in an image and S is the
number of features for each pixel, p. Each pixel, p, in an
image is the basic granule (i.e., pixel granule), represented
as a feature vector, υυυps = (vp1, . . . , vps, . . . , vpS)

� ∈ R
N×S,

where p = {1, . . . , N} and s = {1, . . . , S}. The feature vector,
υυυps is formed by the concatenation of S features. Aggregation
of the pixel granules (granulation process) with similarity of
feature vector, υυυps, will form a higher level set of granules
(i.e., structure granules). We anticipate that these structure
granules are structurally coherent atomic regions in the image
that conform to the natural boundaries between different struc-
tures of crowd and background. The key idea of the atomic
regions is to have a pixel aggregation process versatile to
different crowd scenes, and so this will best categorize the
diverse structures in the scene for robust crowd segmenta-
tion. From the structure granules, we pose crowd segmentation
task as a classification problem to construct granulated view
of foreground (i.e., crowd in the context of this paper) and
background (i.e., sky, buildings, grasses, etc.) granules.

A. Pixel Granules

The finest level of granules represents the most basic aspect
of crowd scenes, which is the pixel information: pixel intensity
and spatial position in image plane. However, due to the com-
plexity of discerning cluttered background from crowd, texture
features are introduced in our proposed framework to increase
the discriminative ability for texture differentiation. This is
because background region such as carpet grass, can be easily
misinterpreted as crowd region. Co-occurrence of multiple fea-
tures, vps, is thus essential to complement the insufficiencies
of other features. Similar strategy is used by humans where
one’s cognition uses existing information to understand a new
subject matter.

In this paper, the texture features are represented by the
widely used local binary pattern (LBP) [32] and local range

Fig. 4. Top row: example crowd scene images. Middle row: entropy
images using 5 × 5 neighborhood. Bottom row: images of LRI using 5 × 5
neighborhood.

of intensity (LRI). Nevertheless, the proposed framework is
not restricted to these sets of features employed in this paper.
Diverse sets of features can be exploited to enhance and adapt
to various image segmentation task.

1) Local Binary Patterns: LBP is adopted to capture the
microstructure of local region by which we analyze the raw
low-level spatial pattern of crowd. LBP is computationally
simple yet a practical gray-level invariant approach to sum-
marize local gray-level structure. Employing LBP to capture
the dense microstructures in crowd regions, such as lines
and edges formed by a mass of crowd can serve as a good
indicator of the presence of crowd. In this paper, we imple-
ment an extended version of LBP operator known as uniform
patterns [33] to cope with variance in rotation of captured
microstructures.

Given pixels within a crowd image, I, we use a 3×3 circu-
larly symmetric local neighborhood, i.e., eight sampling points
centering each pixel of interest. The neighboring pixels are
thresholded against the value of the corresponding pixel of
interest and the value associated with the local neighborhood
is concatenated to form a binary pattern. Texture descriptors
of LBP uniform pattern correspond to the histogram formed
by uniform and nonuniform binary pattern labels.
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Fig. 5. Sample crowd structure granules with variabilities in terms of illumination, scale of persons per area, perspective, and interocclusion. Note that the
scale of person per image area increases when view from left to right.

Fig. 6. Sample background structure granules with variabilities in terms of illumination and texture patterns.

2) Local Range of Intensity: The LRI is defined as the
difference between the extrema (maximum and minimum)
intensity values of a local neighborhood centering each pixel
of interest. The notion of using local intensity variation to
solve visual analysis problem in computer vision has been
used by several researchers, such as [34]. We observed that
crowd segments tend to exhibit larger range of intensity vari-
ation in comparison to background (i.e., noncrowd) regions,
mainly due to varying individual appearances. Instead of using
the conventional entropy measure [35], LRI is deemed more
effective in quantifying the information content (statistical ran-
domness) of local regions based on intensity variation in crowd
scenes. As illustrated in Fig. 4 (middle row), entropy is sus-
ceptible to image noise and background clutters such as grass,
trees, and buildings which produce similar entropy variation.
We anticipate that by adopting LRI feature, the common hur-
dle of discriminating crowd regions from textured background
in existing literatures can be eliminated.

B. Structure Granulars

Crowdedness and the distribution of crowd in crowd scenes
are rarely uniform due to the physical layout of the envi-
ronment and/or the viewpoint of the scene captured. Worse
still, the textures of background (e.g., building structures and
trees) and crowd (as a result of gait, clothing, and shape of
person) vary drastically, as illustrated in Figs. 5 and 6, respec-
tively. It, thus, can lead to vague boundaries between crowd
and background [as shown in Fig. 4 (top row)]. On a finer
scale, the variability of crowd region corresponds to a uni-
son structure [3]. The structures can be intimately governed
by the structure granules to outline the perimeters of coherent
crowd structure and background. We explore the correlation
among pixel granules for granulation, with the aim of forming
structurally uniform structure granules adhering to the natural
edges of crowd scenes for analysis. This is analogous to how
human brains perceive and process visual information; one
does not focus on individual pixels, instead, grouping them
into semantically meaningful forms to understand the image.
In GrC, granulation process is the aggregation of smaller and
lower level granules into a larger and higher level granules
according to their similar characteristics [36]. In terms of
coarse and fine relationship [37], [38], pixel granules are the

refinement of the structure granules where every pixel granule
is contained in the structure granular level.

Structure granules are constructed by aggregating pixels
(i.e., pixel granules) with similar structure feature vector,
adapting the pixels clustering approach [39] with refinement.
The refinement is necessary in this paper to enable auto-
adaptability of structure granules to conform to the structure
of local atomic regions. This is different from the existing
cluster analysis solutions [40]–[43] that use distance mea-
sures such as the similarity between two granules defined
as an average distance between subgranules. More precisely,
we commence by initializing the number of structure gran-
ules, K, in an image, I. The greater the value of K, the
finer is the crowd image partitioned, generating more structure
granules. The initial structure granule centers, {ck}K

k=1, for an
image, I, with N pixels is regularly seeded at a grid inter-
val G = √

(N/K). Each ck is represented by a feature vector,
υυυcks = (vck1, . . . , vcks, . . . , vckS)

�. Within the search region
(2G × 2G) for each structure granule center, ck, similarity of
each feature, vcks ∈ υυυcks of structure granule center, ck, with
pixel, p, within the respective search region is defined as

dτ
ps = ∥

∥vcks − vps
∥
∥

2. (1)

Anchor pixels for a structure granule are the pixels (i.e.,
pixel granules) that are associated with a specific structure
granule center. The anchor pixels for each structure granule
center, ck are obtained by iteratively associating pixels in the
image, I, to the nearest structure granule center using the short-
est pairwise distance. The pairwise distance measure, Dτ , is
formulated as

Dτ =
S

∑

s=1

dτ
ps

mτ−1
s

, τ ∈ {1, 2, 3, . . . } (2)

where mτ−1
s = max

(

mτ−2
s , dτ−1

mps

)

(3)

dτ−1
mps = max

{

dτ−1
ps ,∀ p ∈ 2G × 2G

}

(4)

such that dτ−1
mps is the maximum distance of a structure granule

center, ck, with the pixels within the respective search region
at iteration τ −1. The anchor pixels together with its respective
structure granule center will form a structure granule [i.e., a
region within yellow outlines as shown in Fig. 2 (middle)].
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Fig. 7. Transition of structure granules at each iteration. Structure granules with significant localization improvement are overlaid with different colors (i.e.,
purple, red, yellow, pink, and green) to enhance the visualization of the improved separation between crowd and background regions over the iterations. (a) At
iteration 1, it can be observed that the structure granule with purple overlay consists of crowd and background regions. After several iterations, at iteration τ ,
high localization of structure granules is achieved where crowd and background regions are well separated. That is, the structure granule with yellow overlay
consists of background region only, whereas the structure granules with purple and red overlay consist of crowd region only. Similarly, (b) and (c) show the
localization improvement of structure granules on two different crowd scenes.

Algorithm 1 Construction of Structure Granules

Require: An initial set of structure granule centers, {ck}K
k=1 ∈

I, regularly seeded at a grid interval G and number of
iterations, τ , where τ ∈ N

Ensure: A set of new structure granule centers,
{

cτ
k

}K
k=1 ∈ I

repeat
for each structure granule center, ck do

for each feature, vps do
Compute dτ

ps as to Eq. 1;
end for
Compute Dτ as to Eq. 2;

end for
Associate pixels to the nearest structure granule center,
ck, by Dτ ;
Update set of structure granule centers,

{

cτ
k

}K
k=1 ∈ I;

until Separation between crowd and background regions is
optimized

Note that, mτ−1
s is a novel adaptive varying scaling param-

eter in the GrCS. This is in contrast to the constant scaling
parameter scheme employed in [39]. Due to complex texture
variations in crowd scenes, compactness of structure granules
in terms of crowd and background boundary adherences is
essential to provide an informative granulated view to com-
prehend scene context. Inspired by [44], in this paper, at each
iteration, τ , the selection of our scaling parameter, mτ−1

s for
each dτ

ps is computed by studying the local structure of the
anchor pixels with structure granule center, ck from previ-
ous iterations (3). Using a scaling parameter that honors the
local structures of structure granule enables self-tuning of the
pixel-to-granule center distances according to the local statis-
tic of different features of the granule. The adaptive varying

scaling parameters automatically find, at each iteration, the
scales that enable high structure affinity of pixels within each
structure granule and low structure affinity across neighbor-
ing granules for each structure feature, vps [as shown in (2)].
We demonstrate in Section IV-C that this in turn facilitates
distinct separation adhere to the natural boundaries between
crowd and background regions in crowd images.

A set of new structure granule centers, {cτ
k }K

k=1 ∈ I is
defined at each iteration, where each cτ

k is represented by
the average of feature vector, υυυps of anchor pixels within the
respective clusters. The optimized clusters constructed at this
stage form a vocabulary of structure granules providing the
granular description of the crowd image. Fig. 7 shows exam-
ples of the transition of structure granules at each iteration.
As the number of iterations, τ , increases, the localization of
structure granules improves with optimized separation between
crowd and background regions and eventually converges.2 The
pseudo code in Algorithm 1 describes the iterative process to
construct structure granules given crowd scene image.

C. Crowd Segmentation

Given the structure granular, our objective is to achieve
robust crowd regions inference, and so we pose crowd seg-
mentation as a classification problem. We wish to take into

2The value of dτ
ps and mτ−1

s in (2) is always positive, thus, the Dτ is a
series of positive terms. Since the number of features, S is finite, the number of
terms in the series is also finite. Consequently, the sum of the partial terms of
Dτ is a monotonically increasing sequence. In order to prove the sequence
of partial terms of Dτ converges, we have to verify that the sequence of partial
terms of Dτ is bounded or not. Being the sum of the partial terms of Dτ is
a monotonically increasing sequence, it is bounded below. At the same time,
due to the finite number of features, S, the largest sum of partial terms can
be bounded by any real number, which proves that the sum of partial terms
of Dτ is bounded above. This indicates that the sum of the partial terms of
Dτ is bounded. Hence, the series Dτ converges.
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consideration of the variability (as shown in Figs. 5 and 6)
to infer class label (i.e., crowd or background) of input struc-
ture granules. Random forest algorithm is implemented due to
the high generalization power yet able to avoid model over-
fitting, and being fast during training and testing [45], [46].
Each random decision tree is generated by a random subset,
E′ of the labeled training structure granules with replacement.
At a specific leaf node, the labeled training structure granules,
E′

node = {ci, li}A
i=1 are recursively split into left, E′

left and right,
E′

right node subsets, where ci is a feature vector of structure
granule, li is the corresponding class label (i.e., crowd or back-
ground) and A is the number of training samples. The splitting
is done given a set of thresholds, T and splitting function, f as

E′
left = {

ci ∈ E′
node| f (ci) < t

}

(5)

E′
right = E′

node \ E′
left. (6)

At each leaf node, the threshold, t ∈ T that best split the
training granules with maximized gain, �G is selected

�G = −
∣
∣E′

left

∣
∣

∣
∣E′

left

∣
∣ +

∣
∣
∣E′

right

∣
∣
∣

· Jleft −
∣
∣
∣E′

right

∣
∣
∣

∣
∣E′

left

∣
∣ +

∣
∣
∣E′

right

∣
∣
∣

· Jright

(7)

where J = −∑

l p(li) · (1−p(li)) is the Gini index and p(li) is
the class probability for li. Class labels of Q unseen structure
granules, {cj}Q

j=1 are inferred by traversing down all β decision
trees. Each leaf node of a decision tree returns a prediction
of the class label, lj with class probability distribution p(lj|cj).
The final class label (i.e., crowd or background) of structure
granule is equated by averaging the probability estimate from
each decision tree, defined as

l∗j = arg max
lj

1

β

β
∑

pβ

(

lj|cj
)

. (8)

The class labels of structure granules in an unseen image
computed are used to infer the foreground (i.e., crowd) and
background granules in the crowd scene image. The construc-
tion of foreground and background granules is a process of
granulation. Such granulation process provides a granulated
view of the image which is intended to be on par with the
way a human would annotate crowd and background regions
in a crowd scene.

IV. EXPERIMENTAL RESULTS

Evaluations on the GrCS framework are conducted on
benchmark datasets of real and synthetic crowd scenes
obtained from [2], [7], [9], and [47]. These datasets consist of
crowd scenes in various events, such as parades, concerts, and
rallies. The crowd in these datasets varies in terms of illumi-
nations, crowdedness, and perspectives. The resolutions of the
images range from 240 × 320 to 1024 × 1024. To evaluate the
efficiency of the proposed framework (i.e., conform precisely
to the boundaries between crowd and background regions), we
are persuaded to annotate manually the crowd and background
regions as ground truth for real crowd scenes. Ground truth of

each image is annotated at the pixel level, with careful label-
ing around complex boundaries of crowd. Examples of ground
truth annotation are illustrated in the second row of Fig. 11.
The ground truth for synthetic crowd images is generated by
the Agoraset crowd generator [48]. Each ground truth segment
is highly accurate, i.e., adhering to the precise outline between
crowd and background, where it would be almost infeasible
to achieve manually [49].

A. Experiment Settings

In all the experiments, we set the number of structure gran-
ules, K = 200 and the number of iterations, τ = 10 which
enables high localization of structure granules with adequate
separation between crowd and background regions. The vary-
ing scaling parameter, mτ−1

s , for each dτ
ps is initialized as

m0
s = 10. Evaluation with different values of initialization con-

stant generates consistent structure granules adhering to the
boundaries of crowd. To construct granulated view of fore-
ground (i.e., crowd) and background granules, we use random
forest classifier with the number of random decision trees,
β = 2000 and 100 randomly sampled variable at each split
node. Crowd scene dataset is randomly divided into sets of
40 images to perform fivefold cross-validation to avoid bias.
Each structure granule is represented by the mean of feature
descriptor, υυυps from pixel granulation, with entropy measures
and pixel-wise SIFT [50] features of anchor pixels and struc-
ture granule center, ck. The feature responses of crowd and
background structure granules are combined as input to train
the random forest classifier.

B. Crowd Segmentation

We demonstrate the effectiveness and robustness of the
GrCS for real and synthetic crowd scenes understanding in
the application of crowd segmentation. Evaluations are con-
ducted by benchmarking this paper with the multiscale pixel
grid approaches [7], [9]. Each evaluation is compared against
the benchmark dataset used in each respective approach.

Segmented crowd regions are shown as green overlay,
whereas background regions with red overlay. For quantita-
tive evaluation, the F-score measure is used according to the
well-known PASCAL challenge [51] to evaluate the accuracy
of crowd segmentation by overlapping it with ground truth
annotation (as per pixel basis).

1) Synthetic Crowd Scenes: Evaluations on synthetic crowd
scenes are conducted to gauge the applicability of GrCS.
Crowd segmentation on synthetic crowd scenes is less taxing
given the flat background texture. We show that when scales
of person in crowd are uniform (as shown in row 1 of Fig. 8),
GrCS achieves similar or better F-score than [9] in classify-
ing crowd and background regions. However, on crowd scenes
with perspective distortion and varying crowdedness, GrCS is
more superior at discerning crowd and background regions, as
illustrated in rows 2–4 in Fig. 8. This is not the case for [9],
where their segmentation does not accurately highlight the per-
son in crowd. GrCS framework achieves good segmentation of
individuals in crowd, simply because novel adaptive varying
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Fig. 8. Comparative results of crowd segmentation on synthetic crowd scenes
with [9]. Best viewed in color.

scaling parameter enables conformation of each structure gran-
ules adhering to the complex boundaries between crowd and
background. With optimized structure granules, individuals in
sparse crowd are adequately segmented.

2) Real Crowd Scenes: Contrary to synthetic crowd scene,
real crowd scenes are more challenging given the varying
crowd context, cluttered background and unconstrained phys-
ical layout of environment. We further test the GrCS on real
crowd scenes such as shown in Figs. 9 and 10. Analogous with
synthetic crowd scene, evaluation on real crowd scenes shows
that when the scale of a person in a crowd are uniform where
each person occupies only few pixels, the GrCS is comparable
with [9] (as shown in row 1 of Fig. 9). Evaluation on crowd
scenes with perspective distortion and different crowdedness
shows that our proposed method is able to cope better with
varying scales of individuals in crowd to discern crowd and
background regions in comparison to [9] and [7], as illustrated
in row 3 of Fig. 9 and row 2 of Fig. 10. This is because the cor-
relation among granules is exploited to represent structurally
similar regions in crowd scenes and the variability of structures
is taken into consideration during the granular information
classification.

Background textures have significant influence on the crowd
segmentation performance. For example in row 4 of Fig. 9,
Fagette et al. [9] failed to segment crowd that has been
overlaid by the steel barricades. Worst still, due to the crowd-
like structure of steel barricade, it is mistakenly inferred as

Fig. 9. Comparative results of crowd segmentation on real crowd scenes
with [9]. Best viewed in color.

Fig. 10. Comparative results of crowd segmentation on real crowd scenes
with [7]. Best viewed in color.

crowd segment. On the contrary, the GrCS is able to infer
the actual crowd and background (i.e., steel barricade) seg-
ments. Arbitrary distribution of crowd and background regions
is effectively outlined using GrCS (as shown in the fourth row
of Fig. 9 and the first row of Fig. 10). It provides a more
natural representation of crowd and background regions in
comparison with [7] and [9]. This essentially illustrates the
advantage of granulation process that is adaptive to different
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Fig. 11. Comparative results of crowd segmentation on real crowd scenes with SLIC [39]. First row: real crowd scenes. Second row: ground truth annotations.
Third row: crowd segmentation using SLIC [39] with the respective F-score measures. Forth row: GrCS (adaptive varying scaling parameter) with the respective
F-score measures. Best viewed in color.

crowd structure in scenes over pixel-grid. In addition, GrCS
framework which utilizes LRI feature is less susceptible to
false segmentation.

C. Adaptive Varying Scaling Parameters

We compare the GrCS approach using adaptive varying
scaling parameter against constant scaling parameter [39] on
real crowd scenes. Examples of the ground truth and the
segmentations results in comparison are shown in Fig. 11.
Using constant scaling parameter, we can well separate crowd
from uncluttered background regions, but it performs poorly
on complex and cluttered background. This is observed in
the third row first column of Fig. 11, where the ambiguous
perimeter between crowd and building structure is inaccurately
outlined. Moreover, since some of the structure granules con-
structed using [39] contain both crowd and background texture
(as shown in Fig. 12), it is understandable that the granular
information is prone to classification error. As illustrated in the
first and second column of Fig. 11, constant scaling parame-
ter approach leads to textured regions of buildings inaccurately
inferred as crowd, whereas the GrCS approach is able to define
crowd and background regions corresponding to ground truth
annotation.

To comprehend the influence of adaptive scaling param-
eter on crowd segmentation, Fig. 12 provides visualization
of the ground truth and the comparative results of structure
granules using the novel adaptive varying scaling parameters
and the constant scaling parameter [39] (taken from ran-
dom regions in crowd scenes from the first two columns in
Fig. 11). The results show that using constant scaling parame-
ter [39], the structure granules fail to adhere to the perimeters

between different structures (particularly, crowd and back-
ground), in contrast to GrCS which uses adaptive varying
scaling parameters. The main reason is, since each pixel, p,
is represented by multiple structure features, vps that capture
varying aspects of textures, using a constant scaling param-
eter for all dps throughout the iterations will not work well
to capture the local affinity of each texture feature, vps, of
pixels within the structure granule. Note that constant scaling
parameter will act as normalization constant. Thus, any value
of constant scaling parameter would generate similar structure
granules.

D. Number of Structure Granules

The parameter K determines the number of structure gran-
ules in an image. The greater the K value, the more the
structure granules constructed per image. Fig. 13 provides
visualization of the influence of the parameter K on the
crowd segmentation performance. The result shows that the
higher the K value, the less precise is the segmentation
per image. This is as expected, because with respect to the
image size, with a greater K value, the image is decomposed
into smaller size structure granules, where each granule con-
tains fewer number of pixels. Consequently, fewer structures
are present to infer the content (i.e., crowd or background)
of the corresponding granule. Likewise, the smaller the K
value, the fewer the structure granules constructed per image,
which in turn generate larger size structure granules. When
the size of a structure granule becomes too large, it can
no longer represent the structure characteristics of a local
region. In all the experiments in this paper, we empirically set
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Fig. 12. Comparative results of structure granulation using constant value
scaling parameter [39] and our proposed adaptive varying scaling parameters.
In ideal segmentation results, crowd regions are shown as green overlay, back-
ground with red overlay, and blue line indicate ideal boundary between crowd
and background. Boundaries between crowd and background of structure gran-
ules using adaptive varying scaling parameters are closer to the ground truth.
Best viewed in color. (a) Constant scaling parameter = 10 [39]. (b) Constant
scaling parameter = 20 [39]. (c) Our proposed, msτ − 1. (d) Ground truth.

Fig. 13. Analysis of average f -score measure per crowd image in terms of
number of structure granules, K. For K = 200, the average f -score per image
is 0.873.

K = 200, which forms compact structure granules that out-
lines the natural boundaries between crowd and background
regions.

E. Compactness of Structure Granules

Given the feature descriptor, υυυps, of each pixel in a crowd
scene, structure granules are formed by aggregating correlated
pixel granules (detailed in Section III-B). The sought after
characteristics of structure granules are as follows.

1) Boundaries between the structure granules of crowd and
background regions are distinct, with each segregated
into different structure granules.

2) Structure granules conform to the natural outline of
arbitrary distribution of crowd.

3) Each structure granule contains structurally similar pix-
els of crowd scenes (i.e., high localization accuracy).

This is to cope with varying scales of individuals due to per-
spective distortion. The intuition is that each structure granule
provides a compact and localized primitive characterizing the
local structure for crowd segmentation.

An example of the structure granules (pixels granulation)
on crowd scene constructed using GrCS is shown in Fig. 14
with yellow outlines indicating the partitions between gran-
ules. It is observed that this crowd scene has severe perspective
distortion of crowd. Still, the GrCS is able to aggregate neigh-
boring individuals of similar scale into structurally uniform
atomic regions. Groups of individuals in crowds that appear
much bigger in the images are segregated into different gran-
ules from those that appear smaller (regions in orange, green,
and red box). At the same time, crowd regions with different
crowdedness are observed to be grouped into separated gran-
ules. Despite complex background clutters (i.e., trees, building
patterns, and image noise), the aggregation of correlated pixels
enables precise segregation of crowd and background regions,
as illustrated in blue box.

To evaluate the boundary adherences (compactness) of
structure granules in the crowd scenes quantitatively, we
consider local grouping of structurally similar pixels as a clus-
tering problem, and use the widely adopted measurement in
clustering evaluations (i.e., purity [52]). The purity measure
of structure granules is utilized to quantify the quality of the
granules against the pixel-level ground truth annotation labels
(i.e., crowd or background). A structure granule is considered
pure if it contains label from only one class, which is either
crowd or background. Otherwise, a structure granule is con-
sidered as impure. In this context, an impure structure granule
denotes that there is inaccurate separation between crowd and
background regions. We quantify the accuracy of separation by
using the purity measure, which is bounded within the [0, 1]
range. A higher purity measure suggests a higher accuracy of
boundaries between crowd and background regions.

Fig. 15 shows the comparison and relative improvement
of our structure granules against varying scales of pixel-grid
representation. Due to the aggregation of correlating pixel
granules, structure granules are able to conform to the nat-
ural boundaries between different structures, in particular,
crowd and background structure. Accordingly, the average
purity measure of the proposed structure granules (0.854)
outperforms the pixel-grid representation in all scales. Note
that the proposed structure granules representation does not
require manual intervention to achieve optimal boundaries
adherence.

Furthermore, we show the purity measures of structure gran-
ule per crowd scene in Fig. 16. We observe that there are
few crowd scenes with relatively lower purity measures. Upon
scrutinizing our results, we observe that these images corre-
spond to poorly illuminated crowd scenes, i.e., concerts and
cinema, in which the lack of illumination may weaken infor-
mative textures structures and diminish scene details. Even so,
the purity measures of the respective images are above 0.73.
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Fig. 14. Examples of structure granules on a dense crowd image. Yellow outline indicates the partitions between granules. Blue box: clear separation of
structure granules between crowd and background. Orange, green, and red boxes: structure granules of crowd with significantly different crowdedness. Best
viewed in color.

Fig. 15. Quantitative comparison of the boundary adherence (purity) measure
of structure granules with different pixel-grid sizes. Means are shown in dots,
standard deviations with bars.

Fig. 16. Boundary adherence (purity) measure per structure granule with
respect to image. The average purity is 0.854.

V. CONCLUSION

In this paper, we have explored a new research direction
in dense crowd scene analysis using the theory and princi-
ples of GrC to conceptualize crowd segmentation problem at
different levels of granularity. Structure granules constructed
by aggregating similar neighboring pixel granules are served
as primitive characterizing local textures instead of regular
pixel-grid. Experimental results on public and synthetic crowd

scenes have shown that the granulation approach is effec-
tive in grouping structurally similar pixels into clusters to
cope with perspective distortion, varying crowdedness, and
cluttered background for an effective interpretation of crowd
and background regions. Though the structure granular is
effective in outlining boundaries between multiscale crowd
and background regions, the basis of granules for all gran-
ularity level are texture features. Thus, granulated view of
different granularity level is limited when crowd scenes are
poorly illuminated. Future investigation includes identifying
texture features that are more robust toward characterizing
poor illuminated crowd scenes.
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