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Abstract—Object recognition systems usually require fully com-
plete manually labeled training data to train classifier. In this pa-
per, we study the problem of object recognition, where the training
samples are missing during the classifier learning stage, a task also
known as zero-shot learning. We propose a novel zero-shot learning
strategy that utilizes the topic model and hierarchical class concept.
Our proposed method advanced where cumbersome human anno-
tation stage (i.e., attribute-based classification) is eliminated. We
achieve comparable performance with state-of-the-art algorithms
in four public datasets: PubFig (67.09%), Cifar-100 (54.85%),
Caltech-256 (52.14%), and Animals with Attributes (49.65%),
when unseen classes exist in the classification task.

Index Terms—Image understanding, object recognition, topic
model, zero-shot learning.

I. INTRODUCTION

OBJECT classification from natural images is useful in
content-based image retrieval, video surveillance, robot

localization, and image understanding. According to Lampert
et al. [1], humans are able to distinguish between at least 30 000
relevant classes. However, training conventional object detec-
tors for all these classes would require millions of well-labeled
training images and is likely out of reach for years to come.

As such, the zero-shot learning paradigm [1]–[7] is motivated
from the human ability to learn and abstract from examples
and the capability to describe completely unseen classes (i.e.,
training classes are not available during training of the object
detector) from existing (known) classes. For instance, the au-
thors in [1]–[4] recognize a set of unseen objects using a list of
high-level attributes that serve as an intermediate layer in the
classifier cascade. The attributes enable those systems to recog-
nize the object classes, even without a single training example.
Others, e.g., authors in [5] and [6], use semantic relationships
from different reference classes to predict the unseen classes.
Although promising results were obtained, all these aforemen-
tioned approaches require either extensive human supervision
to build the attributes or a tight semantic relationship between
the unseen classes and the training classes.
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In this paper, we propose 1) a topic model to replace the at-
tributes [1]–[4] so that extensive human supervision is no longer
required, and 2) the Hierarchical Class (HiC) concept to relate
the unseen classes to the existing seen classes. The HiC concept
has a loose relationship image hierarchy compared with [5] and
[6]. Our framework starts with building a bag-of-word (BoW)
model using the image features from the (small amount of) seen
(available) classes. Herein, the HiC concept is utilized to build
the codebook. A topic model [here, we employ the probabilistic
latent semantic analysis (pLSA)] is learned using the generated
BoW model. Based on the learned pLSA model and the HiC
concept, signature topics for both the seen and unseen classes
are deduced (i.e., we cluster similar object classes that share
visual similarity). Finally, object classification is performed us-
ing the deduced signature topics representation. Experimental
results using four publicly available datasets, namely the Pub-
Fig, Cifar-100, Caltech-256, and AwA datasets, have shown the
effectiveness of the proposed method.

The remainder of this paper is structured as follows.
Section II presents the related work. Section III details the pro-
posed methodology. Section IV shows the experimental results,
and Section V presents the discussion.

II. RELATED WORK

Palatucci et al. [17] showed that the attribute description of
an instance or category is useful as a semantically meaningful
intermediate representation to bridge the gap between low-level
features and high-level classes. Thus, the attributes facilitate
transfer and zero-shot learning to alleviate issues of the lack
of labeled training data by expressing classes in terms of well-
known attributes. This is followed by Lampert et al. [1], [13]
who extended the work to animal categorization by introduc-
ing direct attributes prediction (DAP) and indirect attributes
prediction (IAP).

Unlike [1], [13], and [17], Parikh and Grauman [2] introduced
relative attributes to perform zero-shot learning. This approach
captures the relationships between images and objects in terms
of human-nameable visual properties. For example, the models
capture that animal A is “taller” than animal B, or subject X
is “happier” than subject B. This allows a richer language of
supervision and description than the commonly used categorical
(binary) attributes. Although relative attributes seem efficient for
zero-shot learning, the dataset needs to be intraclass (i.e., the
images in the dataset must belong to a set of object classes that
are visually similar). In addition, a binary or relative relationship
between all classes needs to be defined beforehand. Such a
process will require extensive human supervision efforts, and
the decision is always subjective.
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Fig. 1. Comparison between (a) weakly supervised learning as conventional learning algorithms, (b) learning classifier by including association between images
with attributes, or tags, respectively, and (c) the HiC concept.

In our proposed strategy, we replace the attributes with a topic
model in order to reduce the human supervision needed. Oth-
ers who use topic models in zero-shot learning are in [14] and
[15]. They propose a hybrid attribute-topic model to deal with
group social activities. Specifically, they define three unique
attributes: user-defined, latent class-conditional, and latent gen-
eralized free attributes. These attributes are learned jointly in a
semilatent attribute space and as the multimodal latent attribute
topic model (M2LATM). The motivation is to reduce the anno-
tation effort through the introduction of the latent attributes in
their proposed framework. In contrast, our focus in this paper is
on object recognition that learns the topic model directly from
the BoW representations and infers the unseen classes using
the proposed HiC concept. We eliminate the time-consuming
human annotation process by replacing the attributes with topic
models. Instead of learning the topic models on top of user-
defined and latent attributes [14], [15], we choose the pLSA as
our topic model because it does not require prior comparison
with the Latent Dirichlet Allocation model. We further extend
the topic model representation as a mapping algorithm to object
classes so that zero-shot learning would be possible.

Fig. 1 shows conventional solutions that associate each image
with a class label [8]–[11] or further describe the image content
with the association of attributes [1]–[3], [12]–[15] or image tags
[16]. These are insufficient in zero-shot learning because these
attributes and tags can be redundant and not useful when too
many of them are introduced. Yet, there is no specific evaluation
method on “what is an effective attribute or tag.” Therefore, we
introduce a new codebook learning method, i.e., the HiC concept
that utilizes the HiC characteristics during the codebook learning
stage. This concept is inspired by [5], [6], and [18], where a set
of common objects are clustered into different classes in order to
deduce the relationship among them. Specifically, we integrate
two different levels of image class labels, namely the Coarse
Class, C and Fine Class, F . Then, this class hierarchy is learned
in the topic model to identify the significant differences among
the classes and improve the model prediction capability. Such
an approach is better than attribute-based classification [1], [13],
which is commonly applicable in interclass problems only. The
HiC concept manages to deal with both interclass and intraclass
problems.

Similar work that employed the HiC strategy in zero-shot
learning paradigm includes Rohrbach et al. [4] and Frome et al.
[5]. In both approaches, a set of frameworks on how to in-

corporate the semantic information from a language model/set
to assist in the zero-shot learning is studied. Rohrbach et al.
[4] employed WordNet and Wikipedia as the language model
and learned a similarity measure to represent the hierar-
chy/attributes/objectness measure between the object classes.
Frome et al. [5] extended the idea to learn the class relationship
directly from the unannotated data (i.e., visual-semantic rela-
tionship between object classes from millions of documents in
Wikipedia) using the Deep Visual-Semantic Embedding Model.

In another approach, Mensink et al. [6] used a different con-
cept where a distance metric from a set of seen classes (e.g.,
800 seen classes) and errors for both seen and unseen classes
(e.g., 800 seen classes and 200 unseen classes, result in 1000-
way classification) are learned. In order to classify the object
classes, a nearest class mean classifier is employed. This ap-
proach does not require the semantic relationship and manages
to generalize the unseen classes in near to zero computational
cost. For our proposed framework, although it is similar to the
hierarchy-based knowledge transfer in [4], we do not need a
language model to build the hierarchy. Instead, the HiC concept
relates the unseen classes to the seen classes. In addition, we
use learnt topic model to perform the zero-shot learning, which
is different from the attribute-based or direct similarity-based
knowledge transfer in [4] that uses attributes or objectness mea-
sure and [6] that uses metric learning.

III. APPROACH

In this section, we first discuss the prerequisites of the pro-
posed framework: BoW model and topic model. Second, we
explain the HiC concept and detail how to perform zero-shot
learning in pLSA with the HiC concept. Finally, we show the
inference method for image classification purposes.

A. Codebook Representation

To build the BoW model, we engaged the random forest (RF)
algorithm [11], [19], where a random decision tree is constructed
using a random subset of the training data with replacement. The
labeled training images at a particular node Inode = {xi, li} are
recursively split into left node Ileft and right node Iright subsets,
according to a threshold t ∈ T and a split function f

Ileft = {xi ∈ Inode |f(xi) < t}, Iright = Inode \ Ileft (1)
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Fig. 2. Effects of Coarse Class (C) on J-CoFi codebook compared with ordinary F -based codebook. Two examples include building a RF with two trees. One
example has F trees only. Another example has one C tree and one F tree. After the trees are built, we fit feature Fx and Fy that have the similar C, but different
F into the trees. We notice significant differences in the leafnode (orange nodes indicate the path choice of the feature F ) for an F -based codebook. However,
with the help of C in the J-CoFi codebook, the feature F with the same C will have similar path choice in the C Tree, but a different one in the F tree. With this,
we can build a BoW model that retains similarities for the images that belong to the same C.

TABLE I
EXAMPLES OF THE C AND F RELATIONSHIP IN THE HIC CONCEPT

C Electrical Devices Building Water Spot

- Television - House - Coast
F - Refrigerator - Apartment - Beach

- Washing Machine - Tall Building - Underwater

where xi are the feature vectors from the training images, and
li are the associated class labels. At each split node, random
subsets of features are generated and compared with T . In this
process, t ∈ T that maximizes the expected information gain
�E is selected:

�E = E(Inode) −
∑

p=left,right

| Ip |
| Inode

| E(Ip) (2)

where E(I) = p(li) log p(li), and E(I) is the Shannon entropy
of the probability class histogram p(li). As such, the leafnodes
of all trees in the RF form a codebook. Then, the codebook is
used to quantize I into BoW representation, by passing xi to
each tree and count the occurrence of each leafnode.

B. Topic Model

Our model is based on a latent topic model, in particular,
the pLSA model. We briefly introduce it using the terminology
in our context. Suppose we are given a collection of images
D = {d1 , . . . , dN }. Each image d is represented by a collection
of features W = {w1 , . . . , wV }, where it shows how frequent
a particular wv is used in d. A word is the basic item from a
codebook indexed by {1, 2, . . . , V }. A joint probability model
p(w, d) over V × N can be defined as

p(w, d) =
∑

p(z)p(w|z)p(z|d) (3)

where z ∈ Z = {z1 , . . . , zK } is a latent variable. We can further
derive the document-specific word distribution p(w|d) as

p(w|d) =
∑

p(w|z)p(z|d). (4)

However, at the current setting, (3) and (4) could not infer the
unseen classes as the algorithm needs prior knowledge about
which z belongs to which c [20] or a set of labeled training
image {xi, li} in learning the model. In the zero-shot paradigm,
such information is simply not available. In order to handle this
issue, we proposed the HiC concept (discussed next) so that we
can infer the unseen classes to perform zero-shot learning using
the pLSA model.

C. Hierarchical Class Concept

We introduced the HiC concept—a nested class concept as
illustrated in Fig. 1(c), where one image consists of two class
labels (semantically related), HiC = {C,F}. One has a broader
visual concept, namely the Coarse Class, while the other class
labels have a narrow visual concept, namely the Fine Class.
Table I shows some examples of the HiC concept.

Definition 3.1: Coarse Class C is a large concept class (par-
ent) that shares a conceptual similarity, either physical or bio-
logical, within its own Fine Class.

Definition 3.2: Fine Class F is a specific object class and is
a subset to one of the Coarse Class (child).

1) Codebook Representation in HiC concept: Using the HiC
concept, we have three new codebook representations, that are
1) Coarse (C) or Fine (F ); 2) Joint Coarse-Fine (J-CoFi); and
3) CoarseFine (CoFi). We next explain their properties.

Property 3.1 (Coarse (C) or Fine (F )). The C and F code-
books are similar to the initial RF learning described in
Section III-A, except that we substitute li in the Shannon entropy
with Ci or Fi , respectively. We illustrate in Fig. 2 that utilizing
only the F codebook is not an optimum setting as each of the
codebook representations varies drastically although they
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TABLE II
COMPARISON BETWEEN [COARSE (C) OR FINE (F )] VERSUS [JOINT

COARSE-FINE (J-COFI)] CODEBOOK LEARNING STRATEGY

Codebook Type F C J-CoFi Shannon Entropy (E (I ))

C Tree No Yes Yes p(C) log p(C)
F Tree Yes No Yes p(F) log p(F)

belong to the same C. Therefore, we built a variant, namely
the J-CoFi.

Property 3.2 (Joint Coarse-Fine (J-CoFi)). The J-CoFi
codebook strategy adapts both C and F information during the
RF learning. Specifically, we denote the total number of trees as
R. If one uses r of C trees that govern the similarity between xi

with the same Ci and R − r of F trees that distinguish those xi

within its associated C, this will result in a BoW model that has
a similar histogram shape for codebook bins that are created by
C trees. Hence, it eliminates the limitations in Property 3.1.

Table II summarizes the difference between Property 3.1 and
3.2. There still exist limitations in the Property 3.1 and 3.2 when
(2) is employed to compute �E. That is, at one time, one could
only optimize either Ci or Fi during the RF tree node splitting,
and therefore, we introduce the CoFi codebook (see Property
3.3) to handle this limitation.

Property 3.3 (CoarseFine (CoFi)). The CoFi is proposed to
learn the trees in such a way that utilizes both the Ci and Fi ,
simultaneously in the RF tree node splitting. Specifically, we
modified (2); therefore, for each CoFi tree, we consider the total
maximum �E from Ci and Fi simultaneously for each split
node as �Etotal:

�Etotal =
∑

F ,C∈c

[E(Ic) −
∑

p=left,right

| Icp
|

| In | E(Ip)]. (5)

and the splits that maximize the �Etotal will be selected.

D. Zero-Shot Learning in Probabilistic Latent Semantic
Analysis With the Hierarchical Class Concept

In order to perform the zero-shot learning using the HiC
concept, we denote a seen class as s ∈ S and an unseen class
as u ∈ U , where {S,U} ⊂ C. As such, we collect a set of seen
classes pair αu for each u that associate u to a pair of seen
classes s which belongs to the same C:

αu = {(g, h) ∈ F ,F ⊂ C|g ∼ u ∼ h} (6)

where {g, h} ∈ S and∼ indicates conceptual similarity between
c (i.e., as described in Definition 3.1 and in [2]). In the pLSA
model, we introduce a novel mapping algorithm namely topic
sets T that indicate index of z. Each cm will be associated with
specific Tm , which creates a relationship between z and cm .
Our idea is that the unseen class u that could be related to a pair
of unseen classes s (i.e., in this case are g and h) will have high
similarity for their respective T . Therefore, we could relate u
by defining Tu that satisfies the conditions of Tg ∼ Tu ∼ Th

and (g, h) ∈ S. We denote Ts as the signature topic set for the

seen class s as

Ts = arg max
Tm

∑

k∈Tm

p(zk |dm ) (7)

where the size of M is 2K , and p(zk |dm ) is a class-specific
topic distribution that is used to determine Tm for every cm :

p(zk |dm ) =
∑

n⊂m p(zk |dn )∑
m p(zk |dm )

(8)

where Tu is inferred as the union of the Ts pairs (Tg and Th )
to achieve zero-shot learning. Taking K = 3 as an example, the
size of M is 8 ([0 0 1], [0 1 0], [1 0 0], [0 1 1], [1 0 0], [1 0
1], [1 1 0], [1 1 1]), where 1 indicates the signature topic(s) and
vice versa. Ideally, if Tg is [0 0 1] and Th is [1 0 0], then Tu is
[1 0 1].

Finally, given a test class c′m , it can be predicted by evaluating

p(c′m |dtest) =

∑
k∈Tc ′m

p(zk |dtest)
∑

m p(cm |dtest)
. (9)

Algorithm 1 summarizes the proposed framework.

Algorithm 1. Proposed Framework.

Require: A set of labeled training images {xi, li}, HiC
concept, identify unseen classes U and seen classes S.
Ensure: All parameters are set: number of trees R, number
of leafnodes per tree, number of topics K and number of
unseen class q.
1. Learn RF codebook using {xi, li}, either using F
codebook, J-CoFi codebook or CoFi codebook (Property
3.1–3.3).
2. Build BoW histogram based on the codebook in Step 1.
3. Learn pLSA model using the BoW histogram.
4. Find αu for each U based on (6).
5. Calculate the signature topic sets Ts for each S as to (7).
6. Randomly pick αu to relate u with s in terms of
Tg ∼ Tu ∼ Th , (g, h) ∈ S.
7. Calculate the signature topic sets Tu for each U as to (7).
8. Classification for test class c′m using (9).

IV. RESULTS

In the experiments, we employed four public datasets—
PubFig [3], Cifar-100 [21], Caltech-256 [9], and Animals with
Attributes (AwA) [1]. These datasets are designed to pose dif-
ferent visual challenges in terms of illumination effects, scales,
and viewpoints, as well as support more than 120 000 objects.

Implementation details: In order to evaluate p(c′m |dtest), 1-
versus-all classification is performed. Unless specified, the Pub-
Fig, Cifar-100, and Caltech-256 dataset features are extracted
using the pyramid histogram of gradient (PHOG) with three
pyramid levels, 180◦ angle, and 20 bins. Specifically, we use the
PHOG from [10] and [22]. However, we did not concatenate all
the PHOG descriptors found. Instead, we put all these features
in a codebook learning mechanism using the RF algorithm [11],
[19]. Therefore, we can obtain a set of HOG descriptors that
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TABLE III
PUBFIG DATASET: PERFORMANCE EVALUATION (%) OF THE PROPOSED METHOD IN DIFFERENT NUMBERS OF UNSEEN CLASS, q, AND COMPARISON WITH

STATE-OF-THE-ART METHODS

Our Proposed Method
Features Number of Unseen Class, q Binary Attributes Relative Attributes

0 1 2 3 4 5 [1] [2]

PHOG 67.83 58.89 54.99 54.35 51.65 51.30 N/A N/A
GIST+color histogram 69.52 67.09 64.25 62.55 59.52 57.37 37.00 62.00

Fig. 3. Consistency Test: Comparison of the proposed method and the state-
of-the-art solutions [1], [2] in the PubFig dataset with different number of unseen
categories, q.

quantize shape information locally and globally by the nature of
the PHOG. The RF codebook can learn image shapes as a whole,
as well as the local patch characteristic. For the RF codebook,
it is learned using ten trees and 100 leafnodes.

A. PubFig

The PubFig or Public Figures Face Database has a total of
58 797 images of 200 celebrities faces. We used identical subsets
as in [2], where eight random identities are extracted with each
class of 100 images. The pLSA model is built using K = 11,
similar to the number of attributes in [2]. In addition to the PHOG
features, we also reimplement our framework using features
identical to [2], which is a combination of GIST features and
color histograms. We employ the class relationship as in [2] to
find the Tu . However, the optimum nearest seen classes pair
between the unseen classes are chosen, and we assume the (�)
relationship in [2] is similar to our (∼) relationship.

Table III shows that our proposed method has better accuracy
(PHOG: 67.83%; GIST + color histogram: 69.52%) compared
with that of Lampert et al. [1] that uses the binary attributes,
and Parikh and Grauman [2] that uses the relative attributes. Our
results are achieved without the annotation required in [1] and
[2]. When the number of unseen classes q is increased, there is a
consistent drop in the system accuracy from 67.83% to 51.30%
for PHOG features, and from 69.52% to 57.37% for GIST +
color histogram features. This is expected as when the number

TABLE IV
CIFAR-100: COMPARISON OF THE PROPOSED METHOD AND THE

STATE-OF-THE-ART METHODS IN TERMS OF ACCURACY (%)

Our Proposed Method
Number of Unseen Class, q

0

without with HiC concept Sparse Beyond Spatial

HiC concept J-CoFi CoFi 1 2 Coding [23] Pyramid [24]

58.13 57.79 58.21 56.84 54.85 53.70 54.80

TABLE V
CALTECH-256 DATASET: PERFORMANCE EVALUATION (%) OF THE PROPOSED

METHOD IN DIFFERENT NUMBERS OF UNSEEN CLASS, q

Number of Unseen Class, q

0

without with HiC concept

HiC concept J-CoFi CoFi 1 2 3 4 5

67.72 64.60 65.65 52.14 51.49 51.86 52.13 51.32

of unseen classes increases, the system accuracy decreases due
to the tradeoffs between computational complexity and system
accuracy.

We performed a consistency test where we tested the accu-
racy of our proposed method and the method in [1] and [2]
across different q. Fig. 3 shows that the proposed method has
a better consistency (PHOG: ±7%; GIST + color histogram:
±10%) in comparison with [1] (±17%) and [2] (±23%). In
addition, Lampert et al. [1] performed the worst in terms of
accuracy, while Parikh and Grauman [2] performed the worst in
terms of consistency. Such results have shown the effectiveness
and consistency of our proposed algorithm to handle the intr-
aclass variation problem as opposed to the extensive attributes
annotation in [1] and [2].

B. Cifar-100

The Cifar-100 [21] dataset has 100 classes, and each class
contains 600 images with 32 × 32 resolutions. The 100 classes
are further grouped into 20 Coarse Class. Each C has five
F , where q of them is (are) unseen. Thus, we have a total
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TABLE VI
COARSE CLASS C FOR SELECTED CALTECH-256 DATASET

Coarse Class, C Caltech-256 class (Fine Class, F)

household electrical devices binoculars, boom-box, bread maker, calculator, cd, computer keyboard, computer monitor, computer mouse, floppy-disk, head-phones, iPod,
joystick, laptop, light bulb, megaphone, microwave, palm-pilot, paper-shredder, PCI-card, photocopier, refrigerator, rotary-phone, toasters,

treadmill, tripod, VCR, video-projector, washing machine

household furniture bathtub, chandelier, chess-board, desk-globe, doorknob, ewer, flashlight, hammock, hot-tub, hourglass, mailbox, mattress, menorah, picnic table

large man-made outdoor things Buddha, Eiffel-tower, golden-gate-bridge, light-house, minaret, pyramid, skyscraper, smokestack, teepee, tower-Pisa, windmill

medium mammals dog, duck, elk, goat, goose, llama, minotaur, penguin, porcupine, raccoon, skunk, swan, unicorn, zebra, greyhound

vehicles blimp, bulldozer, cannon, canoe, car-tire, covered-wagon, fighting-jet, fire-truck, helicopter, hot-air-ballon, kayak, ketch, license-plate,
motorbikes, mountain-bike, pram, school-bus, segway, self-propelled-lawn-mower, snowmobile, speedboat, steering-wheel, touring-bike,

tricycles, wheelbarrow, airplanes, car-side

household daily items beer-mug, chopsticks, coffee-mug, knife, spoon, stained-glass, paperclip, paper-shredder, coins, dice, drinking-straw, dumb-bell, fire-extinguisher,
frying-pan, ladder, pez-dispenser, playing-card, roulette-wheel, screwdriver, Swiss-army-knife, tweezer, umbrella

sports baseball-bat, baseball-glove, baseball-hoop, billiards, bowling-ball, bowling-pin, boxing-glove, football-helmet, Frisbee, golf-ball, skateboard,
soccer-ball, tennis-ball, tennis-court, tennis-racket, yo-yo

wears cowboy-hat, diamond-ring, eyeglasses, football-helmet, necktie, sneaker, socks, top-hat, t-shirt, human-wear, wielding-mask, yarmulke,
tennis-shoes, saddle, stirrups

musical instruments electric-guitar, French-horn, grand-piano, guitar-pick, harmonica, harp, harpsichord, mandolin, sheet-music, tambourine, tuning-fork, xylophone

TABLE VII
COARSE CLASS C FOR AWA DATASET

Coarse Class, C AwA class (Fine Class, F)

hooves antelope, horse, moose, ox, sheep, rhinoceros, giraffe, buffalo, zebra, deer, pig, cow

weak Siamese cat, Persian cat, skunk, mole, sheep, hamster, rabbit, bat, chihuahua, mouse

grazer antelope, horse, moose, spider monkey, elephant, ox, sheep, hamster, rhinoceros, rabbit, giraffe, buffalo, zebra, giant panda, deer, mouse, cow

stalker grizzly bear, German shepherd, Siamese cat, tiger, leopard, fox, wolf, bobcat, lion, polar bear

flippers killer whale, blue whale, humpback whale, seal, otter, walrus, dolphin

strainteeth killer whale, beaver, blue whale, hippopotamus, humpback whale, walrus

hibernate grizzly bear, beaver, skunk, mole, fox, hamster, squirrel, bat, rat, bobcat, mouse, polar bear, raccoon

bipedal grizzly bear, spider monkey, gorilla, chimpanzee, squirrel, bat, giant panda, polar bear

The object classes in bold are the predefined unseen classes in [1].

s = q × 20. We picked 30 training images randomly, and the
rest are used for testing. In this dataset, we use K = 10, as
ten major semantic topics exist in C, i.e., mammals, size, trees,
vehicles, food, household, insects, reptiles, people, and flow-
ers. The dataset is challenging due to its limited resolution, and
therefore, we only use two pyramid levels for PHOG features
and 50 codewords per tree in codebook learning.

Table IV shows that our proposed method with or without the
HiC concept performed much better as compared with [23] and
[24]. Our approach also outperformed [23], [24], when q = 2.
When q = 2, there is a total of 40 unseen F when training
the classifier. However, our approach was still able to achieve
54.85% accuracy in comparison with 53.70% [23] and 54.80%
[24] where in both approaches, q = 0 (no unseen classes). In ad-
dition, the computational cost of our proposed method is lower,
as we only employed a small number of training images.

Similar to the PubFig dataset, we also observed that when
using fewer seen classes in the learning process, the accuracy
drops. However, the accuracy differences between q = 1 and
q = 2 only differ by a fraction of ±2% even when the differ-
ence number of u is large (the total unseen class here is q × 20).
This indicates that our proposed method is robust as it is ca-

pable to handle the Cifar-100 dataset with very tiny (30 × 30)
images that causes the collected features vector to be very sim-
ilar. Besides, in comparison with the three different codebook
learning strategies, the CoFi codebook method performs the best
as it utilized both Ci and Fi simultaneously in the RF tree node
splitting.

C. Caltech-256

The Caltech-256 dataset [9] consists of 30 607 images
grouped into 256 object classes and a background class. Unfor-
tunately, it does not provide anyC concepts in the dataset. There-
fore, we group the classes manually to C similar to Cifar-100,
except for some specific classes where we introduce new C. In
Table VI, we show the distribution of the selected Caltech-256
classes with five existingC as in Cifar-100 and four newly intro-
duced C. Only 158 of the total Caltech-256 classes are grouped
because some object categories belong to a C that had very few
F members. For this dataset, the total u are q × 9.

Table V shows minor fluctuations compared with the PubFig
and Cifar-100 results when different q values are employed.
For classification settings that have q = 0, interestingly, the
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Fig. 4. AwA Dataset: Confusion matrix between our proposed method, IAP [13], and DAP [13].

proposed method performs better without applying the HiC
concept. We found that this may be due to 1) F in some C
are semantically related but have low visual similarity (i.e., in
this context, the visual similarity is referring to the visual ap-
pearance of the object class), e.g., “computer keyboard,” “com-
puter monitor,” and “computer mouse,” which belong to the C
= “household electrical devices”; 2) introducing C tree to the
codebook did not help in boosting the codebook discriminating
power, which might be due to the low visual similarity among
F in some C as well; and 3) the complexity of the objects
in Caltech-256. However, the zero-shot learning still provides
reasonable results. For this dataset, we did not perform any
comparisons as there are only 158 classes extracted.

D. Animal With Attributes

AwA is an object dataset of animal classes with correspond-
ing attributes attached to each class. There are a total of 50
animal classes and 85 attributes in the dataset. We use similar
experimental settings as in [1] and [13], where same features
and partitions of seen (i.e., 40) and unseen (i.e., 10) classes were
employed. To build the C and F relationships, we adopt the at-
tributes relationships and pick the attributes that have q ≤ 2 and
have the lowest number of F possible. As a result, we grouped
eight C and each C has 6 to 12 F , as shown in Table VII.

Herein, our proposed method achieved an accuracy of
49.65%. This is better as compared with the DAP and IAP [13],
which achieved 41.4% and 42.2%, respectively, to M2LATM
[15] that obtain 41.3%, and attribute/hierarchical label embed-
ding [25] that achieved 43.5%. We also show the confusion
matrix of the ten test classes in Fig. 4. We observe that our
proposed method has better average classification results com-
pared with DAP and IAP [13]. Although our proposed method
does not predict the “humpback whale” class as well as DAP
and IAP, but we achieve better accuracy in the “giant panda”
class, which leads to better overall accuracy. These results bene-
fit from the HiC concept defined for AwA, where “giant panda”
class is the only u in C = {“grazer”}. Note that the “hump-
back whale” class resides in C = {“flippers,” “strainteeth”},

and both C contains more than one u. Therefore, we observe
the accuracy drops in the “humpback whale” class. The same
situation applies to the “rat” class and “raccoon” class as they
share the same C = {“hibernate”} .

V. DISCUSSION

In this paper, we compared our proposed method with four
public datasets and achieved better performance compared with
state-of-the-art methods for zero-shot learning. Even in the con-
ventional classification problem where training images for all
object classes are available, we still manage to get state-of-the-
art accuracy in PubFig and Cifar-100 datasets.

In the conducted experiments, there are some cases where the
predicted Tu is redundant. That is, if a lower number of K is
chosen, the numbers of possible M will be reduced as well, and
hence, there is a possibility to obtain similar Tu for different
u, which is a redundant representation. In order to handle this
issue, we employ a large number of K in the experiments to
minimize the probability of Tc to be redundant.

Based on the experiments in Caltech-256 dataset, we are
aware that the classification accuracy is fluctuating due to the
quality of F collection under each C. Although the F within C
is grouped based on the semantic relationship, these F might
be visually dissimilar. This limitation is likely to be solved by
introducing a middle-level class group to extend theF within the
C to some high-visual similarity group, e.g., we can group and
extend F : “head-phones,” “rotary-phones,” and “megaphone”
in C: “household electrical devices” to C: “phones.” When we
pick the random αu to model u = {“megaphone”}, the “head-
phones” and “rotary-phones” will have priority as the related
s. Nonetheless, our future work includes introducing tighter
relationship between the Fine Class and the Coarse Class so
that better performance can be achieved.
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