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A B S T R A C T

Low-light is an inescapable element of our daily surroundings that greatly affects the efficiency of our vision.
Research works on low-light imagery have seen a steady growth, particularly in the field of image enhancement,
but there is still a lack of a go-to database as a benchmark. Besides, research fields that may assist us in low-
light environments, such as object detection, has glossed over this aspect even though breakthroughs-after-
breakthroughs had been achieved in recent years, most noticeably from the lack of low-light data (less than 2% of
the total images) in successful public benchmark datasets such as PASCAL VOC, ImageNet, and Microsoft COCO.
Thus, we propose the Exclusively Dark dataset to elevate this data drought. It consists exclusively of low-light
images captured in visible light only, with image and object level annotations. Moreover, we share insightful
findings in regards to the effects of low-light on the object detection task by analyzing the visualizations of
both hand-crafted and learned features. We found that the effects of low-light reach far deeper into the features
than can be solved by simple ‘‘illumination invariance’’. It is our hope that this analysis and the Exclusively
Dark dataset can encourage the growth in low-light domain researches on different fields. The dataset can be
downloaded at https://github.com/cs-chan/Exclusively-Dark-Image-Dataset.

1. Introduction

Low-light environment is an integral part of our everyday activities.
As day change to night, the amount of available light decreases,
causing our surroundings to be increasingly dark, and subsequently
affecting our abilities to perform even menial tasks due to the lack
of visibility. Computer vision research and systems aimed at assisting
people in daily activities, as well as improve safety and security could
be especially helpful in such conditions (Leo et al., 2017). However,
low-light research commonly focus on the image enhancement problem
that hardly relates to assistive systems, or night vision surveillance that
demands costly hardware, whereas more related domains like object
detection are seldom given attention. Though significant breakthroughs
have been achieved one after another in the object detection domain,
they evidently deal with bright images while significantly lacking for
low-light. We believe this is largely due to a lack of available dataset to
facilitate and benchmark the research in this area.

Well known public object datasets, PASCAL VOC (Everingham et al.,
2010), ImageNet (Russakovsky et al., 2015a), and Microsoft COCO (Lin
et al., 2014), played an integral role in the advancements as they provide
large scale data for many researchers to work on or as challenges that
promote progress in object detection and recognition. The PASCAL VOC
is one of the earliest object datasets with comparatively large amounts
of images at that time, consisting many variations that represent re-
alistic environments during a time where object datasets suffer from
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simplicity and bias (Torralba and Efros, 2011). Since the launch of the
dataset in 2006, it has facilitated the development of many handcrafted
approaches for object centric applications (Felzenszwalb et al., 2008;
Wang et al., 2010). In 2011, the rise of internet data mining has led to
the collection of even larger scale data, prominently the ImageNet, that
led to the breakthrough of deep learning using Convolutional Neural
Network (CNN) (Krizhevsky et al., 2012), and subsequently sparked a
whole new generation of deep learning works in computer vision and
machine learning domain. While datasets continue to grow in numbers,
a new challenge arises in the form of data annotation because it is
difficult for the human annotators to cope with the sheer numbers. Then
enters Microsoft COCO in 2014, while not as large in numbers as the
ImageNet, it brings to the table, comprehensive annotation covering a
variety of tasks which includes recognition, segmentation, and caption-
ing. While the progress brought by these datasets are remarkable, there
is a glaringly obvious lapse, that is, less than 2% of the images in these
influential datasets are captured in low-light conditions. Moreover,
there are no publicly available datasets that specifically provide natural
low-light images for object focused works to the best of our knowledge.

We believe this shortage of data has impeded both the understanding
and development of computer vision in low-light environments. Thus,
we are committed and hope to move the field forward in this direction
through the Exclusively Dark (ExDARK) dataset. It contains 7363 low-
light images from very low-light environments to twilight, and 12
object classes annotated on both image class level and local object
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Fig. 1. Example images from the Exclusively Dark dataset with image and object level annotations. [Best viewed in color.]

bounding boxes, as shown in Fig. 1. We believe this database could
facilitate a better understanding of the low-light phenomenon focusing
on objects, unlike the current trend of low-light research works where
limited samples were used for benchmarking enhancement algorithms,
or camera dependent images like thermal imaging and near infra-red for
surveillance that are costly and do not show realistic images.

This paper presents two contributions. First, we propose the Exclu-
sively Dark (ExDARK) dataset which to the best of our knowledge, is
the largest collection of natural low-light images taken in visible light
to-date with object level annotation. Secondly, we provide an object-
focused analysis of low-light images using the state-of-the-art algorithms
in both hand-crafted and learned features for a better understanding of
low-light vision and its difference from vision with sufficient illumina-
tion.

2. Related works

This section discusses the related work, particularly the common
data used in low-light researches and renown public object datasets.

2.1. Low-light data

Works on low-light commonly address two different areas. The
first is enhancement, where algorithms are proposed to improve the
visibility of the contents in low-light images or videos. The second is
in surveillance which can be categorized as detection tasks, but the
data used differ greatly from typical object detection due to the use of
different types of cameras.

Low-light image enhancement: The datasets used to benchmark
enhancement works are commonly taken from those used for quality
evaluation, but not necessarily a standard that is widely used in the low-
light domain, such as the IVC database (Le Callet and Autrusseau, 2005)
that were collected for general image enhancement works instead of
low-light enhancement. As such, the images were synthetically darkened
to simulate low-light so that the original image can be used as a
groundtruth for comparison (Lim et al., 2015; Lore et al., 2017). There
are also those who proposed datasets for enhancement but the amount
is low, with less than 100 images (Wang et al., 2013) which is common
for image quality works. Whereas some chose to combine datasets to
obtain a larger variety for benchmarking (Fu et al., 2016b; Jung et al.,
2017). It is also common to capture or download low-light images for
qualitative assessments (Huang et al., 2013; Li et al., 2015; Fu et al.,
2016a; Guo et al., 2017). Essentially, the datasets used are highly

inconsistent. Nonetheless, recently two notable datasets for low-light
image enhancement has been proposed, the See-in-the-Dark dataset
(SID) (Chen et al., 2018) and LOw Light paired dataset (LOL) (Wei et al.,
2018) that simulates low-light images by adjusting the camera exposure
time and ISO. The SID provides 5094 short exposure images (low-light)
corresponding to 424 long-exposure images (bright), whereas the LOL
consists of 500 image pairs. While these datasets provide the much
needed bright and low-light image pairs, the images do not represent
real low-light environments such as nighttime. Moreover, the images
are captured using specific cameras and do not contain dynamic objects
because it is crucial for the image pairs to perfectly match. Contrarily,
our proposed ExDARK dataset is made up of images captured in real
low-light environments, contains dynamic objects such as cars, people,
etc., and unconstrained by the imaging device.

Low-light denoising: Denoising is a notable subfield of low-light
enhancement as noise is a significant problem in low-light visual data.
Due to the nature of the environment where such data is captured,
modern digital cameras rely on exposure timing and sensitivity settings
to compensate for the lack of light which in turn bring about significant
noise signals to the resultant images or videos. In related low-light
enhancement researches, the noise problem is dealt with either as a
post-processing of enhancement (Fu et al., 2016a; Guo et al., 2017;
Shen et al., 2017) or incorporated into the enhancement process (Malm
et al., 2007; Kim et al., 2015; Fu et al., 2016b; Su and Jung, 2017; Lore
et al., 2017; Li et al., 2018). However, we note that the data, particularly
images, used for these works are either synthetically generated, typically
by adding Poisson noise and/or Gaussian noise into the synthetically
darkened images without much consideration for accurate modeling of
the noise content in contrast to real low-light data, or captured using
specific cameras so as to have prior information for noise modeling.
Hence, a specified low-light image database containing multitudes
of images captured using unconstrained hardware will be the next
challenge for such studies of noise in the low-light domain.

Low-light surveillance: Thermal and near infrared cameras are
generally used to counter limited light for surveillance operations at
night. Common object detection is not usually addressed in surveillance
works, although the closest would be face recognition (Li et al., 2007;
Kang et al., 2014) and pedestrian detection (Davis and Keck, 2005;
Dong et al., 2007; Elguebaly and Bouguila, 2013; Qi et al., 2014;
Zhao et al., 2015). Datasets such as the OTCVBS (Davis and Keck,
2005; Davis and Sharma, 2007; Li et al., 2007; Bilodeau et al., 2014),
LSI (Olmeda et al., 2013), and LDHF (Kang et al., 2014) were acquired
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with careful setup using sophisticated hardware that is much more
difficult to obtain as compared to visible light images taken by general
digital cameras. Moreover, the unrealistic images provided are not
suitable for the practical understanding of low-light in common vision.

2.2. Popular object datasets

PASCAL VOC: The PASCAL VOC (Everingham et al., 2010) object
dataset grew from 2005 till 2012, with annual challenges that encour-
aged researchers to develop ever improving algorithms to outdo one
another in the spirit of progress. It began with only 4 object classes and
3787 images sourced from existing datasets. Initially containing simple
object images, it has been continuously improved with more challenging
images, and additional annotations. The last update to the dataset in
2012 puts the cumulative total at 26,305 images with 20 object classes,
including annotations for object region of interest and segmentations.

ImageNet: ImageNet (Russakovsky et al., 2015a) was open to public
in 2010 as the largest object image dataset, and gained great interest
from the community especially in 2012 where its database of over 1
million images and 1000 image level object classes has allowed CNNs to
be optimized and set a new benchmark in the object image classification
task (Krizhevsky et al., 2012). The provided images are very challenging,
where each of them is categorized into one of the object classes as long
as there are instances of the object, regardless if the objects are either
occluded or if the image contains other objects. Since then, ImageNet
has become the de facto dataset for object image works, either as the
main benchmark (Krizhevsky et al., 2012) or as the fundamental data
for transfer learning (Donahue et al., 2014; Lee et al., 2017). In 2017,
the dataset has reach new heights with more than 14 million images,
and 1000 classes of which 200 of them has bounding box annotation for
object detection tasks.

Microsoft COCO: The latest of notable object datasets is the Mi-
crosoft COCO (Lin et al., 2014), released in 2014. The quantity of
images provided are not up to that of ImageNet, though its advantage
is in the completeness of the image annotations. Specifically, 80 object
classes annotated from bounding box for the detection task, to pixel
level annotation for the segmentation task, as well as description of each
image for the image captioning task. Similar to ImageNet, the content
of the images are highly challenging where even a small instance of an
object’s part is annotated.

As a summary, despite that the three aforementioned datasets are
challenging and large, the number of low-light images within them
are considerably small, as shown in Table 1. In contrast, our proposed
dataset, the ExDARK has 7363 images, inclusive of 223 images from our
initial low-light pedestrian dataset (Loh and Chan, 2015), with 12 object
classes annotated to the bounding box level. Although it is not massive,
the low-light images would provide approximately 400% more than the
low-light images found in the aforementioned datasets combined.

3. Exclusively Dark dataset

This section discusses (1) the motivation in establishing an object in
low-light image dataset, (2) our observations on the handling of low-
light images by past and present researches, and (3) the properties of
the ExDARK.

Aspiration for low-light image data. A significant motivation in
the effort to introduce a singular low-light image dataset is that there is
none that is available to-date to set the standards for research in this
domain. Even in low-light image enhancement works, real low-light
images were mostly downloaded or captured on an ad hoc basis (Huang
et al., 2013; Li et al., 2015; Fu et al., 2016a; Guo et al., 2017). On
the other hand, large scale object datasets (Everingham et al., 2010;
Russakovsky et al., 2015a; Lin et al., 2014) that claims data variations
and generalization hardly provide enough low-light images, as shown

Table 1
Approximate number of low-light images in various public object datasets, and our
proposed Exclusively Dark dataset.

Dataset Low-light image [Amount (% from total)]

Microsoft COCO

Training 149 (0.18%)
Validation 163 (0.4%)
Testing 2014 138 (0.34%)
Testing 2015 115 (0.14%)

Total 565 (0.23%)

ImageNet

Training 2012 255 (0.02%)
Validation 2012 38 (0.08%)
Testing 2012 51 (0.05%)
Validation 2013 12 (0.26%)
Testing 2013 22 (0.23%)
Training 2014 72 (0.12%)

Total 450 (0.03%)

PASCAL VOC

2007 123 (1.24%)
2008 72 (1.66%)
2009 43 (1.58%)
2010 50 (1.43%)
2011 48 (1.32%)
2012 17 (0.79%)

Total 353 (1.34%)

Exclusively Dark 2018 7363 (100%)

in Table 1, to represent the true extend of environments and challenges
faced in such conditions despite being an integral element in daily
vision. Hence, with our proposed ExDARK, we hope to provide a
staple collection of images for benchmarking low-light research works,
and bring together different areas of expertise to focus on low-light
conditions, for instance, image understanding, image enhancement,
object detection, etc.

Handling of low-light images. Based on our observations, we found
that low-light is commonly glossed over in object dataset analyses (Ever-
ingham et al., 2015; Russakovsky et al., 2015b; Lin et al., 2014) with the
preferred emphasis on object instances, scale, occlusion, and quantity.
Therefore, it is not surprising that state-of-the-art object detectors, past
and present (Felzenszwalb et al., 2008; Wang et al., 2010; Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016), were
not designed nor were they analyzed, given the samples they had to
work with. This has also indirectly led many researchers to oversimplify
the diversity and challenges of low-light images. Considering very early
computer vision works, such as well-known feature extractors (Lowe,
2004; Dalal and Triggs, 2005), had already strove for illumination in-
variance in their designs, it is understandable that many would consider
illumination or low-light condition as just an auxiliary element to other
challenges without going into a deeper understanding. Particularly, with
the emergence of deep learning, machine learning is expected to be able
to counteract this problem with ease. However, we show in our analyses
in Section 4 that there is more to be studied than just relying on machine
intelligence.

Knowing low-light images. We believe that the characterization of
the low-light condition as just ‘‘illumination variation’’ is insufficient
as the ‘‘variations’’ encompass much more. For example, low-light
condition can emerge depending on the time of day (e.g. twilight,
nighttime), location (e.g. indoor, outdoor), and the availability of light
sources and their types (e.g. the sun, man-made lights). The combination
of these three factors can create a great deal of disparity between image
to image or even within an image itself. The impact of these variations
has been left unexplained in most works, especially in object detection
tasks, however, a grasp of their behavior can potentially advance the
field. Though, rather than disregarding the milestones of researches so
far, we simply believe that a gap has been overlooked in the common
analysis, which we intend to fill in for a more thorough understanding
of computer vision.
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Fig. 2. Statistics of ExDARK dataset. (a) Object instances per image; (b) Fraction of image
classes; (c) Object occurrence in dataset; (d) Image illumination types.[Best viewed in
color.].

3.1. ExDARK dataset statistics

The ExDARK is a low-light object image dataset, where an image
is categorized as low-light if it has either low or significant variations
in illumination. The dataset currently has 7363 images with 12 object
classes, namely Bicycle, Boat, Bottle, Bus, Car, Cat, Chair, Cup, Dog,
Motorbike, People, and Table.

Data collection. We performed data collection from a variety of
sources targeting the specified object classes. Most of the low-light
images were downloaded from internet websites and search engines,
namely Flickr.com, Photobucket.com, Imgur.com, Deviantart.com, Getty-
images.com, and Google Search. We used keywords related to low-light
conditions, such as dark, low-light, nighttime, etc., to manually search and
download the images.

We have also sub-sampled images from some public datasets, mainly
PASCAL VOC, ImageNet, and Microsoft COCO, while there are also
additional small amounts of images from other datasets (Russell et al.,
2008; Philbin et al., 2008). Furthermore, we increased the variation of
the images by extracting frames of low-light scenes from a collection
of movies, as well as manually capture low-light images using different
models of smart phones and digital cameras.

Object annotations. The collected data is annotated on two levels,
the first is image class annotation where the images are sorted into the
12 classes based on the object instances only, regardless if the object is
the majority in the image. Second is the bounding box annotation of the
objects, where every instance of any of the 12 classes are annotated in
all images using Piotr’s Computer Vision Matlab toolbox (Dollár, 0000).

Fig. 2 shows the statistics of the number of images and their fraction
with respect to the annotations. Most of the images provide a single
instance of an object, but a considerable amount of the images have
more instances. The highest number of bounding box annotations found
in an image is 58, as shown Fig. 2a. Images that contain multiple
instances can be a mixture of different objects, as shown in Fig. 1.
While we kept a relatively balanced number of images in the image level
annotation as shown in Fig. 2b, most of the bounding box annotations
are from the People class, as seen in Fig. 2c. Among the total of 23,710
object instances annotated, 7460 are People, from single person to a
crowd. We believe this would be useful for pedestrian detection work
as well.

Types of low-light. From our collection of data, we have also
identified 10 types of low-light conditions, in indoor and outdoor

Table 2
Number of images per object class used for analyses.

Dataset Exclusively Dark Microsoft COCO
Class Number of Image Number of image

Bicycle 652 603
Boat 679 650
Bottle 547 650
Bus 527 564
Car 638 650
Cat 735 650
Chair 648 651
Cup 519 650
Dog 801 650
Motorbike 503 644
People 609 650
Table 505 650
Total 7363 7662

environments, that are commonly captured in images. Examples of the
types are shown in Fig. 3 and explained as follows:

• Low: Images with very low illumination and hardly visible details.
• Ambient: Images with weak illumination and the light source is

not captured within.
• Object: Images where there is/are brightly illuminated object1(s)

but surroundings are dark and the light source is not captured
within.

• Single: Images where a single light source is visible.
• Weak: Images with multiple visible but weak light sources.
• Strong: Images with multiple visible and relatively bright light

sources.
• Screen: Indoor images with visible bright screens (i.e. computer

monitors, televisions).
• Window: Indoor images with bright windows as light sources.
• Shadow: Outdoor images captured in daylight but the objects are

shrouded in shadows.
• Twilight: Outdoor images captured in twilight (i.e. time of day

between dawn and sunrise, or between dusk and sunset).

We hope this categorization of low-light images will be valuable
for future research, particularly for the low-light image enhancement
domain, as identifying different illumination types could assist in the
design of enhancement algorithms to handle the over and under en-
hancement problem accordingly. Fig. 2d shows the statistics of the
different illumination types found in the ExDARK dataset.

4. Analyzing image features in low-light

In this section, we look into the effectiveness of image features,
commonly used in object tasks, on the ExDARK. In particular, we employ
object proposal algorithms that make use of hand-crafted features (Zit-
nick and Dollár, 2014; Cheng et al., 2014; Fang et al., 2016), and object
classification CNN (He et al., 2016) that learns features, to study their
behavior in low-light images in comparison to bright images, as well as
to gain new insights on this domain.

In our study, Microsoft COCO (MS-COCO) is used as the baseline
dataset in our analysis. However, since the ExDARK has considerably
less images compared to the MS-COCO, we sub-sampled bright images
from MS-COCO for a fair comparison. Table 2 shows the number of
images for each class of the ExDARK and the subset from MS-COCO that
we have randomly extracted based on the classes of interest. For the
MS-COCO images, only the annotations of the 12 chosen object classes
are kept for the analysis while the rest are discarded. As a result, there
are a total of 23,710 object instances in the ExDARK and 34,370 in the
MS-COCO subset.

1 The illuminated object is not necessarily from the 12 specified classes.
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Fig. 3. Example of low-light image types in the ExDARK dataset.

4.1. Performance of hand-crafted features

Hand-crafted features are designed computations to extract mean-
ingful information, based on established insights on the behaviors of
the image contents, as opposed to learned features where computational
models are trained to discover the meaningful information by itself.
While the progress of deep learning in these few years has seen a shift
in preference towards learned features, hand-crafted features are still
employed, particularly for the object proposal task due to their high
speed and low complexity nature. In this analysis, we intend to look
into the abilities of classically hand engineered features when handling
low-light images, thus we engage algorithms that use different types
of features for our comparison, namely Edge Boxes2 (Zitnick and Dollár,
2014), BING3 (Cheng et al., 2014), and Adobe Boxes4 (Fang et al., 2016),
instead of deep learning based proposers (Ren et al., 2015; Redmon
et al., 2016). A brief description of these methods are as follows:

• Edge Boxes, as stated in the name, proposes object bounding boxes
by grouping edges, and uses the edge inside the bounding box to
compute a score indicating the likelihood of object (objectness).

• BING is based on correlation between object boundaries and norm
of image gradients. To this end, they implement SVM classification
on the binarized norm gradients of bounding boxes to determine
which box likely bounds a full object. Another SVM is then used
on the SVM output scores to calibrate a final objectness score.

• Adobe Boxes uses groups of superpixels with high contrast from the
background as the representation of object parts, named adobes,
to propose object bounding boxes. The spatial concentration of
adobes are used to calculate the objectness score. This method

2 https://github.com/pdollar/edges.
3 using implementation provided by Fang et al. (2016) of Adobe Boxes
4 https://github.com/fzw310/AdobeBoxes-v1.0-/tree/master/

AdobeBoxes(v1.0).

Fig. 4. Detection rate and recall of Edge boxes (red), BING (green), Adobe Boxes (blue),
AdobeBING (black), at maximum proposal of 1000 boxes tested on ExDARK and MS-
COCO.

can also be used to refine proposals produced by other methods,
which the paper shows works well when combined with BING
(AdobeBING).

4.1.1. Quantitative evaluation
This evaluation is to assess the ability of hand-crafted features to

detect objects in both bright and low-light images, disregarding the
identity of the objects. Experiments were performed to compare the
detection (detections/groundtruths) and recall (detections/proposals)
rates between the datasets using each proposal method. In the tests, all
the methods were set to produce a maximum of 1000 bounding boxes,
however the total could be less depending on the algorithms’ ability to
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Table 3
Average proposals, average detections, detection rate, and recall of different proposal
methods at maximum proposal of 1000 and IoU of 0.7.

Methods Dataset Avg. Prop./im Avg. Det./im Det. Rate Recall

Edge boxes MS-COCO 998 1.9871 0.4430 0.0020
ExDARK 987 1.7050 0.5295 0.0017

BING MS-COCO 1000 0.6457 0.1439 0.0006
ExDARK 1000 0.4483 0.1392 0.0004

Adobe boxes MS-COCO 1000 1.6753 0.3735 0.0017
ExDARK 999 1.1039 0.3428 0.0011

Adobe BING MS-COCO 1000 1.6010 0.3569 0.0016
ExDARK 1000 1.0209 0.3170 0.0010

Fig. 5. MS-COCO images: Examples of proposals (top) and visualizations of their re-
spective features (bottom). (Red: undetected groundtruth; Green: detected groundtruth,
Green dotted: proposed box) From left: Edge Boxes, BING, Adobe Boxes, and AdobeBING.
(Maximum proposals = 1000; IoU = 0.7.) (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

confidently propose the boxes. As for the evaluation, the Intersection
over Union (IoU) metric is used, where varying thresholds, from 0.5 to
1.0, were tested.

Implicitly, as the IoU increases, the detection rate and recall will
reduce as the criteria to constitute a detection becomes stricter, as seen
in Fig. 4. At lower IoU, the detection rate is higher for images from the
ExDARK but the condition gradually inverts as the IoU increases. From
the onset, the higher detection rate on the ExDARK seems to indicate
more object detections, however, the results in Table 3 shows that
the average detection in the low-light images are less than MS-COCO
for all methods. Hence, we postulate that the reason for the observed
higher detection rate is caused by the number of groundtruth where
the images in MS-COCO contain more objects that remain undetected.

Fig. 6. ExDARK images: Examples of proposals (top) and visualizations of their respective
features (bottom). (Red: undetected groundtruth; Green: detected groundtruth, Green
dotted: proposed box) From left: Edge Boxes, BING, Adobe Boxes, and AdobeBING. (Max.
proposals = 1000; IoU = 0.7.) (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

These undetected objects can be attributed to the complexity of the
MS-COCO images where many of the objects are too small, occluded,
or only partially shown in the image, a common trait in challenging
bright datasets. Whereas the images from ExDARK mostly contain the
full objects where the main challenge comes from the illumination.
Nonetheless, the low detection rate showed by ExDARK at higher IoU
is also an indication that it is more challenging to get an accurate
localization in low-light images as compared to bright images.

On the other hand, the recall rate on the ExDARK is obviously lower
than the MS-COCO data using any of the studied methods. This result
infers that most of the proposals in the low-light images are not valuable,
even though the average proposal per image may be lower than that in
MS-COCO, such as for the Edge Boxes and Adobe Boxes in Table 3.

4.1.2. Qualitative evaluation
We further study the results of different features by examining

qualitative examples of both bright and low-light images in Figs. 5
and 6 respectively, as well as visualizations of the features used by the
proposers.

In Fig. 5, we notice that the MS-COCO images have objects that
are very small compared to the image size, which cause the studied
methods, particularly the Edge Boxes and BING to fail. This is evident
in their respective edge and gradient images, where the features are
unable to capture the details of really small objects. On the other hand,
Adobe Boxes and AdobeBING are better as superpixels are more precise
in segmenting the objects from the background, but it still could not
solve the problem.

On the contrary, the failures in the ExDARK are not due to object
scale, but from factors related to low-light, as shown in Fig. 6. The first
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Fig. 7. Detection rate and recall of Edge Boxes, BING, Adobe Boxes, AdobeBING on
ExDark dataset, sorted into different low-light image types. (Maximum proposals = 1000;
IoU = 0.7.)

is due to the additional noise in low-light images that causes the failure
due to interference from extra features, as seen in the first two row

of images in Fig. 6. Even if there are successful proposals, we can see
that the alignment is rather far from the groundtruth. These noises are
usually caused by the high camera ISO setting used to compensate the
low light level but at the same time it makes the camera oversensitive
to the surrounding light. The other cause is the blending of the objects
either to the background or to other objects, as seen in the last two
rows of examples in Fig. 6. The methods are especially weak for these
types of conditions because the gradient boundaries are unclear and the
superpixels were unable to distinguish the difference between the low
valued pixels of objects and backgrounds.

4.1.3. Further look into low-light
We take a further look into the detection and recall rates of each

method separated into the 10 types of low-light images that we have
established in Section 3.1. Fig. 7 shows the detection and recall rates,
where Edge Boxes performs the best for all types of low-light conditions.
Images with Ambient and Single lighting have the best detection rates,
while Low and surprisingly, Strong lighting are the weakest. Whereas for
the recall, the Object lighting type is the best while Low is the weakest.
Fig. 8 shows examples of Edge Boxes detections in the different types of
lighting.

The method performs quite well for the Ambient and Single light types
because there are still enough light in the image to highlight the object
features, particularly when the objects are nearer to the source of light.
Whereas for very low light images, the objects are more likely to blend
into the background. On the other hand, images taken in strongly lit
low-light environments are expected to show more features, however,
such environments are also more cluttered with objects and irregular
light sources that result in complex images, subsequently deteriorating
the detection performance.

Considering the recall, very low light images has the lowest value
because either the contrast of the objects are too low for the object

Fig. 8. Examples of Edge Boxes proposals (Max. proposals = 1000; IoU = 0.7) on different types of low-light images (top) and visualizations of their respective edge features (bottom).
(Red: undetected groundtruth; and Green: detected groundtruth, Green dotted: proposed box) From left, first row: Low, Ambient, Object, Single, Weak; and second row: Strong, Screen,
Window, Shadow, Twilight . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Examples of noisy low-light images (top) and respective enhanced counterparts
using LIME (Guo et al., 2017) (bottom) to show the severity of the signals. The red
bounding boxes show the zoom-in areas of significant noisy signals . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

features to be extracted, or the image is saturated with noise due to the
camera’s high ISO setting. Images with a well illuminated object but low-
light surroundings, give the best recall because the well lit object will
mostly be detected even if the other objects in the low-light background
are missed, hence aiding in the recall evaluation. For the most part, the
detection rates using these hand-crafted approaches are below 70% for
any type of low-light conditions, which leaves room for improvement
towards a good low-light object detection system.

4.1.4. The noise problem
As found from the analyses in Sections 4.1.2 and 4.1.3, noise

is a notable component in the low-light images. Moreover, various
enhancement works distinctly discuss and address the problem by
either employing existing off-the-shelf denoising algorithms as a post-
processing step (Fu et al., 2016a; Guo et al., 2017; Shen et al., 2017) or
incorporating mechanisms into the proposed enhancements (Lee et al.,
2005; Malm et al., 2007; Kim et al., 2015; Fu et al., 2016b; Su and
Jung, 2017; Lore et al., 2017; Li et al., 2018). These works brought
forward various noise types that exist in low-light images which need
to be addressed and the following three are the most noteworthy.

Poisson noise: Due to the nature of imaging devices that is discrete,
in environments that have extremely low light it is necessary to increase
the signal acceptance level but even so, the number of photons captured
by the device’s sensors fluctuate randomly which causes the resultant
image to have noise. This noise signals conform to the Poisson distribu-
tion model, hence called Poisson noise.

Gaussian noise: Many works tend to address image noise using
Gaussian-based denoisers due to the strategy using white Gaussian noise
with unit variance to approximate Poisson noise (Remez et al., 2017).
Moreover, Lee et al. (2005) note that portions of the Poisson noise
behave similarly to Gaussian noise.

False color noise (FCN): FCN is especially noticeable to human
observation as they appear as random pixels of varying colors that
do not belong to the natural appearance of an image. This noise can
be attributed to the clipping of color filters in the analog-to-digital
conversion (ADC) of the signals.

Fig. 9 shows examples of low-light images from the ExDARK con-
taining significant amounts of the aforementioned noise signals. As
the signals are hardly noticeable on the original low-light images due
to low intensity, we brightened them using the LIME algorithm (Guo
et al., 2017) to emphasize the signals for easier observation. It is clearly
noticeable that the noise significantly affects the quality of the images
and possibly degrade the performance of features. Therefore, a test and
analysis is conducted to ascertain their impact on hand-crafted object
features. Specifically, the experiments in Section 4.1 were repeated on
denoised ExDARK data. The BM3D (Dabov et al., 2007) was chosen as
the denoiser for its performance and also due to its common application

Fig. 10. Detection rate and recall of Edge boxes (red), BING (green), Adobe Boxes (blue),
and AdobeBING (black), at maximum proposal of 1000 boxes tested on ExDARK and
ExDARK denoised by BM3D (BM3D).

Table 4
Average proposals, average detections, detection rate, and recall of proposal methods
tested on ExDARK and ExDARK denoised by BM3D (BM3D) at maximum proposal of 1000
and IoU of 0.7.

Methods Dataset Avg. Prop./im Avg. Det./im Det. Rate Recall

Edge Boxes ExDARK 987 1.7050 0.5295 0.0017
BM3D 997 1.7686 0.5492 0.0018

BING ExDARK 1000 0.4483 0.1392 0.0004
BM3D 1000 0.4504 0.1399 0.0005

Adobe Boxes ExDARK 999 1.1039 0.3428 0.0011
BM3D 999 1.0024 0.3113 0.0010

Adobe BING ExDARK 1000 1.0209 0.3170 0.0010
BM3D 1000 0.9648 0.2996 0.0010

in low-light enhancement post-processing (Fu et al., 2016a; Guo et al.,
2017; Shen et al., 2017).

Based on the quantitative results shown in Fig. 10 and Table 4, there
is only a minor improvement for the Edge Boxes, and worse, degrades
the results of BING, Adobe Boxes and AdobeBING. Fig. 11 shows some
examples of their features before and after denoising. For the Edge
Boxes, it can be seen that the denoising improves the edge features of
the objects in the image which contributed to the better performance,
however, there seems to be an increase of artifacts. A similar behavior
is observed from the superpixel features used by Adobe Boxes where
there are clear box-like artifacts that have occluded the object and
degraded the performance. As for BING, the BM3D managed to reduce
some noise but the effect is insignificant, which is in agreement with the
quantitative observation.

In summary, we can deduce a few inferences from these findings.
First, denoising is only able to assist some features, such as edges, where
it brings out some features but at the same time it may increase artifacts.
This is mainly due to the nature of the BM3D algorithm that uses
‘‘blocks" filtering that is not designed for low-light conditions. Secondly,
the detection rate only improved by a small margin after denoising. This
indicates that the challenge for computer vision tasks in low-light is not
only due to noise, but also the lack of signals in low-light conditions.
Thus, these two paths: (a) denoising for low-light data; and (b) low-light
enhancement that retrieves informative signals, are potential directions
for research growth.

4.2. Insights from learned features

As we have explored hand-crafted features in Section 4.1, here we
explore the capabilities of learned features in low-light. In contrast
to hand-crafted features, learned features rely on the computation of
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Fig. 11. Comparison between low-light images (Top) and their BM3D denoised counterpart (Bottom) with the visualization of their respective features used for object proposal. From
left: Edge Boxes, BING, and Adobe Boxes (Red: undetected groundtruth; Green: detected groundtruth, and Green dotted: proposal box).

machine learning algorithms to uncover the best representations for
a given task. At first, the features learned remain largely unknown as
we could not fully comprehend the high dimensional representations
generated by machines. Nevertheless, many works had since visualized
high dimensional data and features (Donahue et al., 2014; Zeiler and
Fergus, 2014; Mahendran and Vedaldi, 2015; Yosinski et al., 2015; Lee
et al., 2017) to understand and find out what the machines ‘‘see’’.

In this section, we attempt to uncover the features in low-light
images by visualizing a straight forward object image classification
CNN, as opposed to the more intricate object detection networks.
Specifically, we fine-tuned the pre-trained Resnet-50 model (He et al.,
2016), on the Microsoft COCO and ExDARK data, and evaluated their
performance based on different ratios of bright and dark data used
in the fine-tuning. Then, we look into the behavior of the learned
representations in two ways. First, the t-SNE (Maaten and Hinton,
2008) is used to visualize a 2D mapping on the clustering behavior
achieved by the learned feature vectors. Second, the visualization of the
activations in convolution maps corresponding to the spatial location
on the images (Yosinski et al., 2015) in order to find out which part of
an image ‘‘triggers’’ the classification outcome, i.e. the attention of the
network.

4.2.1. Classification performance
It is commonly agreed that CNN performs better when trained with

more general data, i.e. very large numbers of images with complex
variations. However, on account that the amount of images in the
ExDARK is still too small to train a full CNN model from scratch, we
approach the task by fine-tuning the existing Resnet-50 model that is
pre-trained using ImageNet. The Resnet model is chosen for this task
because it is currently one of the top performing architectures in both
the ILSVRC and Microsoft COCO challenges.

The training setup of the experiments include replacing the last
classification layer of the pre-trained Resnet-50 model which has 1000
object classes for the ImageNet into the 12 object classes of the exper-
imented dataset. The learning rate of this new layer is set as 0.001,
while the pre-trained layers have a lower learning rate of 0.0001, and
they are kept constant throughout the training. The optimization scheme
used is the Stochastic Gradient Descent with batch size of 32. The pre-
processing of the training data includes augmentation by cropping and
jittering for better model generalization, as well as subtracting with the
training dataset’s mean RGB image as normalization. All of the models
used were trained for 50 epochs.

The data stated in Table 2 are used for the experiments. We set aside
400 images per object class for the training, where 250 of them were
used to fine-tune the model and 150 were used for validation. Hence,
both the Microsoft COCO and ExDARK provide 4800 training images
each, while the remaining 2862 and 2563 respectively make up the test
set. Table 5 shows baseline results of models trained using the subset

Table 5
Accuracy of Resnet-50 models trained using all relevant data from the Microsoft COCO
and the extracted subset detailed in Table 2, with and without fine-tuning. MS-COCO:
performance on Microsoft COCO test images only, ExDARK: performance on ExDARK test
images only, Overall: performance on test images of both sets.

Training data Fine-tuning Test accuracy

MS-COCO ExDARK Overall

All No 54.82% 40.27% 47.94%
All Yes 61.60% 50.84% 56.52%
Subset No 54.16% 34.57% 44.90%
Subset Yes 62.75% 43.15% 53.49%

Table 6
Accuracy of Resnet-50 models fine-tuned using different ratios of bright images (Microsoft
COCO) and low-light images (ExDARK). MS-COCO: performance on Microsoft COCO test
images only, ExDARK: performance on ExDARK test images only, Overall: performance
on test images of both sets.

Model Training ratio Test accuracy

MS-COCO:ExDARK MS-COCO ExDARK Overall

1 10:0 62.75% 43.15% 53.49%
2 9:1 63.31% 48.89% 56.50%
3 8:2 62.16% 52.75% 57.71%
4 7:3 61.25% 55.05% 58.32%
5 6:4 61.50% 55.64% 58.73%
6 5:5 61.18% 58.45% 59.89%
7 4:6 59.89% 58.99% 59.47%
8 3:7 58.00% 59.54% 58.73%
9 2:8 57.27% 61.45% 59.24%

10 1:9 55.38% 62.27% 58.64%
11 0:10 46.30% 62.58% 53.99%

and all relevant data of the Microsoft COCO5 training and validation
set, with and without fine-tuning. It can be seen that the performance
is clearly lacking when classifying low-light data.

Our main experiments use different ratios of bright to low-light
images, from 10:0 (only bright images) to 0:10 (only low-light images)
maintaining the same overall number of training images, to fine-tune
different models and observe the classification outcomes on the same
independent testing data and the test results are shown in Table 6.

A few inferences can be drawn from these results. First, the notion
that the illumination variation of low-light can be addressed in the same
manner as noise (as training data augmentation) is improper. As we can
see in the results, the models that were fine-tuned with less amount of
low-light images are weaker at classifying them, and gradually increases
with the ratio, indicating dataset dependency. On the other hand, we
had a presumption that balanced or generalized training data would
enable the model to learn features that are mutually useful for both types
of images and subsequently achieve best classification performance, but

5 Images that contain the 12 objects as in ExDARK.
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Fig. 12. t-SNE embedding of features vectors from Resnet-50 fine-tuned on 5:5 ratio of bright and low-light images. (a) Class 1–12: Bicycle, Boat, Bottle, Bus, Car, Cat, Chair, Cup, Dog,
Motorbike, People, and Table; (b) Type 1–2: Bright (MS-COCO), and Low-light (ExDARK) images. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 13. t-SNE embedding of feature vectors from Resnet 50, fine-tuned on 5:5 ratio low-light images. (a) Separated by indoor (‘x’) and outdoor (‘o’) and color coded by the type of light
conditions, 1–10: Low, Ambient, Object, Single, Weak, Strong, Screen (indoor only), Window (indoor only), Shadow (Outdoor only), and Twilight (outdoor only); (b) Color coded by
classes, Class 1–12: Bicycle, Boat, Bottle, Bus, Car, Cat, Chair, Cup, Dog, Motorbike, People, and Table. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the results indicate otherwise. While the overall classification accuracy
of Model 6 is the best, it appears to be a trade-off result as its
performance is no better than a model specifically trained and tested
on either bright (Model 1) or low-light (Model 11) images, even though
they are addressing the same classification task. Hence, we bring forth
the following two deductions: (1) the dataset dependent performance
concurs the necessity of a low-light only dataset, and (2) the observation
that a balanced training data did not raise the overall performance
suggests bright and low-light data belong to different clusters that
requires separate modeling. We are keen to explore further into the
features to understand and verify this behavior.

Training amount influence. Additionally, we inspected the influ-
ence of data amount on the performance, specifically by training two
additional models, A and B, by varying the image amount as shown in
Table 7. Model A was trained using the same ratio as Model 6, but with
all available training images of the subset, i.e. doubling the total training
images used for Model 6. On the other hand, Model B is trained using
only the low-light images but half the amount of those used to train

Table 7
Accuracy of Resnet-50 models fine-tuned using different ratios of bright images (Microsoft
COCO) and low-light images (ExDARK). MS-COCO: performance on Microsoft COCO test
images only, ExDARK: performance on ExDARK test images only, Overall: performance
on test images of both sets.

Model Training ratio Test accuracy

MS-COCO:ExDARK MS-COCO ExDARK Overall

6 5:5 61.18% 58.45% 59.89%
A 10:10 63.31% 63.71% 63.50%
11 0:10 46.30% 62.58% 53.99%
B 0:5 40.46% 55.52% 47.58%

Model 11. As seen in Table 7, the performance improves with more
training data as shown by Model A and deteriorates when the data is
reduced as in Model B. This is in line with the notion that CNNs require
more data to improve its performance. However, the important message
from this finding is that more low-light data is indeed needed to boost
the performance of such systems.
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Fig. 14. Test images (top) and the visualization of activation maps (bottom). (a)–(e) Correctly classified low-light images; (f)–(j) Misclassified low-light images; (k)–(o) Misclassified
bright images. (Classification results in sub-caption; and the correct (groundtruth) class labels are: (f) Cat, (g) Chair, (h) Cup, (i) Dog, (j) Motorbike, (k) Motorbike, (l) People, (m) Dog, (n)
Table, (o) Bicycle). [Best viewed in color.].
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4.2.2. Feature analysis with t-SNE
We look into the features learned by the Resnet-50 model fine-tuned

on 5:5 data ratio (Model 6) using the t-SNE algorithm6 (Maaten and
Hinton, 2008). In a classification CNN, the output produced by the
last convolution layer is the high level representation that is used by
the subsequent fully connected layers that act as the classifier. Hence,
to study the behavior of the high level features, we extracted the
feature vectors of the last pooling layer of Model 6 when classifying
the testing images. The t-SNE is then used to reduce these 1 × 1 × 2048
dimension feature vectors into a 2-dimension embedding which shows
the relationship between the features.

Fig. 12 shows the embedding of the test images generated by t-SNE
and color coordinated by the object classes, and image types. Noticeable
grouping of the object classes can be seen in Fig. 12a, and classes that
are relatively similar, such as Cat (5-green) and Dog (9-dark blue) are
grouped closely, as circled in red. We deduced that the learned features
are able to capture high level abstraction of objects, though considerable
amounts of confusion are still present, as seen by the mixture of colors
circled in black.

We further look into the feature embeddings from another perspec-
tive by marking the scatter points with two colors to show the bright
and low-light images as in Fig. 12b. Surprisingly, it shows a clear
separation between bright images from the MS-COCO dataset (red) with
the low-light images of ExDARK (blue). This observation is interesting
because the feature vectors visualized are high level representations
used to achieve object classification, whereas the brightness or intensity
difference in images should be a low level feature. In our initial
intuition, we believed that the training data normalization, and the data
progression through the layers of the CNN towards high level abstraction
should have normalized and disregarded the brightness between bright
and low-light data as it is not a crucial feature for the classification of
objects. However, the t-SNE embedding shows otherwise, which is a
clear indication that even though the model is trained on both types of
image for the same task, the features learned are inherently different.
For example, the region for Cat and Dog classes (circled in red) has a
distinct split (red dotted line). Moreover, the region that do not have
a distinct clustering of classes (circled in black) are found within the
low-light image cluster, thus pointing out that the features learned for
low-light images may not be as robust as those for bright images.

Furthermore, we examined the t-SNE embedding by color coor-
dinating the scatter plot based on the types of low-light, as well as
differentiating them by indoor and outdoor environments, as illustrated
in Fig. 13. Firstly, the CNN features seem to be able to distinguish indoor
and outdoor by a small degree of confidence. We can see that the indoor
images seem to cluster to the upper half of the embedding while the
outdoor images are scattered throughout. On the other hand, the CNN
features appear to have the ability to distinguish certain types of low-
light images, such as Low (1-red), Strong (6-light blue), and Twilight
(10-pink), though this ability may interfere with its robustness for the
object classification task. As we show in the comparison between Figs.
13a and 13b, the clustering of Low (1-red) and Window (8-dark blue)
illumination type features (circled in black) have caused confusion to
Cat, Chair, Dog, and People object classes. However, the clustering of
the features may be stronger for the classification task, such as the Boat
class cluster (circled in red) grouping both Strong and Twilight images
together, though a separation can still be seen. Hence, we surmise
that CNN model unwittingly learns low-light properties which can be
a hindrance to the object classification task.

4.2.3. Attention analysis with activation maps
In this section, we delve into the activation maps of the trained model

to find out its attention when performing the classification, and verify
if low-light elements are an influence to it. Specifically, we chose to
visualize the activation maps before the last pooling layer of Model 6

6 https://lvdmaaten.github.io/tsne/.

(last convolution output before the fully connected layer), so that the
spatial location of the activations are preserved.

The visualization is done by first extracting the 7 × 7 × 2048
dimension activation maps of the model when classifying an image.
These maps are then aggregated into a single map by selecting the
maximum value among the maps for every spatial location. Thus, the
resultant aggregated map will have high values for locations that are
either highly activated or gives high contribution to the classifier. This
map is then resized to the original image’s dimensions and superimposed
onto the image, whereby we will be able to visualize the model’s
attention on the image that led to the classification result.

Fig. 14 shows a few examples of the classified test images and
their respective activation regions. Our analysis found that in low-light
images, the attention of the model are often drawn to the bright sources
of light, either partially or entirely. For example, the activation maps
of the correctly classified images in Figs. 14a–14e shows that while the
main attention is on the object of interest, the light sources are either
within the attention (Figs. 14a–14c) or directly shine on the objects
(Figs. 14d–14e). While the model can ‘‘overlook’’ the light sources, like
in Fig. 14e, there are many cases, such as Figs. 14f–14j, where the
attention of the model is overtaken by the brightest areas and causes
misclassification. Yet this is not an issue for bright images, where the
misclassification is commonly due to the attention being on another
object instead of the labeled class, as shown in Figs. 14k–14o.

5. Summary and conclusion

In this paper, the Exclusively Dark dataset is introduced in hopes
of providing a go-to database for low-light research works and also
to encourage the community to look into the challenges of low-light
environments that has long been glossed over, especially in applica-
tion based researches such as object detection. Unlike common object
datasets, the Exclusively Dark consists fully of low-light images captured
in visible light with image and object level annotations of up to 12
classes, as well as a distinction of up to 10 types of low-light conditions.

Using this dataset, we performed an extensive analysis of low-light
images from the perspective of object detection by digging deep into the
behavior of common features, both hand-crafted and learned, in which
we found interesting insights. We found that the design of hand-crafted
features are mainly for bright conditions, thus unable to adequately
address cases of noise and lack of details that frequently exist in low-
light images. Similarly, a state-of-the-art denoising algorithm is also
insufficient to handle the noise that frequently occurs alongside low-
light data.

Conversely, our investigation into learned features by training CNNs
using both bright and low-light data indicated that, indeed the number
of low-light data should be increased for better performance in low-
light conditions. Furthermore, by visualizing the feature vectors and
activation maps of a CNN, we have come to understand that low-light
‘‘alters’’ object features, i.e. the same object in bright and low-light yields
amply different features. Moreover, the irregularity of illumination
greatly challenges the attention of features that is not found in bright
environments. Therefore, object detection in low-light is not to be trifled
with lightly, but instead requires careful consideration and a dedicated
dataset is needed to push progress forward.

While our study has been focused on object detection based feature
analysis, we believe there are more to be unraveled in the low-light
domain. For this reason, we hope the Exclusively Dark to be a valuable
database for future ventures, either to further understand the vision
behavior or improve the performance of practical tasks in low-light.
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