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Introduction



IPR Protection Needed!
● Training a DNN is resource 

intensive

● High business value in trained 
DNN

● Adversaries may steal and 
redistribute the networks

● Protection on DNN is needed

● Verify ownership of DNN

● Take legal action
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How to verify the ownership?
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2 Watermark Settings
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Removal Attacks



● Modify DNN parameters  to remove embedded signature

Removal Attacks

Removal
Attack

Corrupted 
Signature



Removal Attacks

Fine-tuning

Overwriting

Pruning



Ambiguity Attacks

A’s Property B’s Property



Ambiguity
● More than one ownership information exists
● Owner can no longer prove unique ownership

A’s Property B’s Property
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Previous Works



List of Previous Researches:
● Uchida et al. Embedding Watermarks into Deep Neural Networks [2]

● Bita et al. DeepSigns: A Generic Watermarking Framework for IP Protection of 
Deep Learning Models [5]

● Adi et al. Turning your weakness into a strength: Watermarking deep neural 
networks by backdooring [3]

● Zhang et al. Protecting intellectual property of deep neural networks with 
watermarking [4]

● Fan et al. Rethinking  deep  neural network ownership verification:  Embedding 
passports to defeat ambiguity attacks [1]

● And more...

CNN Watermarking Works (for classification)
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CNN Watermarking Works (for classification)



Problem Statement
● No research on protecting GANs’ IPR 
● Framework used in CNN classification not 

applicable to GANs



Proposed Framework



● GANs consist of a generator and a discriminator
○ Generator: Learn distribution of training data

○ Discriminator: Classify samples as real/fake

● Variants: DCGAN [6], SRGAN [7], CycleGAN [8]

Generative Adversarial Networks (GANs)



● Task: Image Generation

● Input: Latent vector

● Output: Generated Image

DCGAN [6]
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● Task: Super Resolution

● Input: Low-res Image, ILR

● Output: High-res Image, ISR

SRGAN [7]
PROTECT 

HERE



● Task: Image-to-image Translation

● Input: Image, X

● Output: Image, Y

CycleGAN [8]

PROTECT 
HERE



Watermarking GANs (Proposed)
● Introduce regularization loss to generator loss function

● No changes made to network architecture

● Experiments on DCGAN, SRGAN, CycleGAN

Generator loss
X	∈	{DCGAN,	SRGAN,	CycleGAN}

argmin	𝓛X +					𝝺𝓛w +					𝓛S
black-box

regularization

trade-off
hyper-parameter

sign-loss [18]
regularization 
(white-box)



Black-box watermarking 
in GANs
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Some Visual Results
DCGAN on 
CIFAR10

SRGAN on Set14 CycleGAN on Cityscapes

Trigger Input Output

Trigger Input Output

Trigger Input Output



● Quantitatively, use Structural Similarity (SSIM) [9] to calculate score

between generated watermark & template watermark

● If SSIM score > threshold: watermark detected

(Black-box) Watermark Verification

SSIM( ,									)=	[0,	1]	(score)



SSIM Score Distribution of 500 Samples

Threshold

SSIM

(Black-box) Watermark Verification



(Black-box) Watermarking in DCGAN

𝓛w=	1	- SSIM(GDC(f(z))	,	g(GDC(z),WM	))

f(z)	=	z ￮ b +	c(1	- b)
g( ,									)=	

GDC(																)	=

z f(z),	c=-10
GDC(z)



(Black-box) Watermarking in SRGAN

𝓛w=	1	- SSIM(GSR(h(X))	,	g(GSR(X),WM	))

g( ,									)=	h:

GSR( )=

X GSR(X)h(X)



(Black-box) Watermarking in CycleGAN

𝓛w=	1	- SSIM(GCyc(h(X))	,	g(GCyc(X),WM	))

g( ,									)=	h:

GCyc( )=

X
GCyc(X)

h(X)



White-box watermarking 
in GANs



(White-box) Watermark Verification

Extract Normalization 
Weights, γ



(White-box) Watermarking GANs
● Define a sign watermark, b ={bk |	bk∈	{-1,	1}}

○ Example: ASCII codes
● Modified from sign loss [1] to embed b into normalization weights, γ

● Sign loss enforces weights to take either positive or negative

𝓛S=	∑kmax(		γ0 - γk bk	,	0)
Constant,

default = 0.1

Learnable Parameter:
Weight at kth channel

Target sign
at kth channel

Fan et al. [5]



● Performance of original task is consistent

● Applying framework does not harm the performance

Fidelity

Baseline Proposed

DCGAN (FID) 26.54 26.27

SRGAN (PSNR/SSIM) 29.38/0.85 29.14/0.85

CycleGAN (Class IoU) 0.13 0.14



● Black-box watermark is clearly visible (SSIM score > threshold)

● White-box watermark is 100% detected (0 bit error)

Watermark detection

black-box (SSIM) white-box

DCGAN 0.97 100%

SRGAN 0.93 100%

CycleGAN 0.90 100%



● Finetune GANs using training data, without regularization terms

● Both black-box & white-box watermark persist after fine-tuning

Fine-tuning

Before After

black-box 
(SSIM) white-box black-box 

(SSIM) white-box

DCGAN 0.97 100% 0.96 100%

SRGAN 0.93 100% 0.83 100%

CycleGAN 0.90 100% 0.85 100%



● The black-box & white-box watermark persist before the model is 
excessively pruned

Pruning

% pruned 10 20 30 40 50 60 70 80 90

black-box (SSIM) 0.958 0.949 0.924 0.889 0.836 0.760 0.606 0.389 0.176

white-box 100% 100% 100% 100% 100% 100% 100% 100% 100%



● Using the same watermarking method, but using new watermark

● Black-box watermark removed, White-box watermark persists

Overwriting

Before After

black-box 
(SSIM) white-box black-box 

(SSIM) white-box

DCGAN 0.97 100% 0.49 100%

SRGAN 0.93 100% 0.17 100%

CycleGAN 0.90 100% 0.15 100%



● Change the sign of normalization weight, γ

● Slight changes in sign causing very poor performance

Ambiguity Attack



Ambiguity Attack

% sign difference0% 100%



● Previous works mainly on CNN classification works

● Proposed black-box + white-box protection framework for GANs
● Framework does not change network architecture
● Applied to DCGAN, SRGAN & CycleGAN without affecting performance
● Framework is robust against removal attack and ambiguity attack

Key Takeaway



Paper & Code

arXiv

https://arxiv.org/abs/2102.04362

GitHub

https://github.com/dingsheng-ong/ipr-gan

sheng970303@gmail.com

https://arxiv.org/abs/2102.04362
https://github.com/dingsheng-ong/ipr-gan
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